%0 Journal Article %T ComputationalpredictionofMHCⅡ-peptideligandsbindingspecificitiesbyAUCOptimizedGibbs %A 盛浩 %A 卢玉 %A 峰张屹 %J 大连理工大学学报 %P 28-36 %D 2014 %R 10.7511/dllgxb201401005 %X Inthedesignofpeptide-basedorotherdefinedantigen-basedvaccines,itisimportanttoknowwhichfragmentsofpathogen-derivedproteinswouldbindtotheMHCⅡmolecules.MoststudiesoftheMHCⅡepitopepredictionrarelygavethequantitativeanalysesofbindingspecificities.Sotheaccuracyofthesemodelsstillneedstobeimproved.AUCOptimizedGibbs(AOG)methodusesthehomologyreducedAUC,ratherthantherelativeentropytoguidethesampler.Itmakesboththepositiveandnegativeinformationofthesamplesbeincorporatedintothemodel.AOGachievesaverageAUCvaluesof0.771and0.713onthetenoriginalandhomologyreducedHLA-DR4(B1*0401)epitopebenchmarks,whicharebetterthan0.744and0.673bytheGibbssamplingmethod.InthequantitativeIEDBMHC-Ⅱbenchmarks,AOGachievesanaverageAUCvalueof0.766,comparedto0.718bytheTEPITOPE.AdetailedinspectionofinformationextractedfromHLA-DR4(B1*0401)dataallowstheidentificationofpositionswithobviousspecificities,i.e.,P1,P4,P6andP9positions,whichhavedistinctinfluenceontheMHC-peptidebinding. %K Gibbssamplingmethod %K epitope %K MHCⅡmolecules %K reducedhomology %U http://press.dlut.edu.cn/ch/reader/view_abstract.aspx?file_no=20140105&flag=1