Jameson A. Analysis and design of numerical schemes for gas dynamics, 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence [J]. Intern. J. Comput. Fluid Dyn., 1995, 4(3/4):171-218
[2]
Jameson A. Analysis and design of numerical schemes for gas dynamics, 2: Artificial diffusion and discrete shock structure [J]. Intern. J. Comput. Fluid Dyn., 1995, 5(1/2):1-38
[3]
Fuchs F G, Mishra S, Risebro N H. Splitting based finite volume schemes for ideal MHD equations [J]. J. Comput. Phys., 2009, 228(3):641-660
[4]
Shen Y, Zha G, Huerta M A. E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO Scheme[J]. J. Comput. Phys., 2012, 231(19): 6233-6247
[5]
Balsara D S. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics[J]. J. Comput. Phys., 2012, 231(22):7504-7517
[6]
Ziegler U. A central-constrained transport scheme for ideal magnetohydrodynamics [J]. J. Comput. Phys., 2004, 196(2):393-416
[7]
Ziegler U. A solution-adaptive central-constraint transport scheme for magnetohydrodynamics [J]. Comput. Phys. Commun., 2005, 170(2):153-174
[8]
Uygun M, K1rkk?prü K. Computation of time-accurate laminar flows using dual time stepping and local preconditioning with multigrid [J]. Turkish J. Eng. Environ. Sci., 2007, 31(4):211-223
[9]
Zhao Y, Hui Tan H, Zhang B. A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids [J]. J. Comput. Phys., 2002, 183(1):233-273
[10]
Zha G C, Shen Y, Wang B. An improved low diffusion E-CUSP upwind scheme [J]. Comput. Fluid., 2011, 48(1):214-220
[11]
Feng X, Yang L, Xiang C, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid [J]. Astrophy. J.,2010, 723(1):300
[12]
Feng X, Zhang S, Xiang C, et al. A hybrid solar wind model of the CESE+ HLL method with a Yin-Yang overset grid and an AMR grid [J]. Astrophys. J., 2011, 734(1):50
[13]
Feng X, Jiang C, Xiang C, et al. A data-driven model for the global coronal evolution [J]. Astrophys. J., 2012, 758(1):62
[14]
Feng X, Xiang C, Zhong D. The state-of-art of three-dimensional numerical study for corona-interplanetary process of solar storms,[J]. Sci. Sin. Terr., 2011, 41:1-28. In Chinese (冯学尚, 向长青, 钟鼎坤. 太阳风暴的日冕行星际过程三维数值研究进展,[J]. 中国科学, 2011, 41:1-28)
[15]
Feng X, Yang L, Xiang C, et al. Validation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations [J]. Solar Phys., 2012, 279(1):207-229
[16]
Keppens R, Meliani Z, Van Marle A J, et al. Parallel, gridadaptive approaches for relativistic hydro and magnetohydrodynamics [J]. J. Comput. Phys., 2012, 231(3):718-744
[17]
Zhao H Y, Li J L. Application analysis on dual-time stepping,[J]. Chin. J. Comput. Phys., 2008, 25(3):5-10. In Chinese (赵慧勇,乐嘉陵.双时间步方法 的应用分析,[J]. 计算物理, 2008, 25(3):5-10)
[18]
Jameson A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings [R], AIAA 91-1596. Honolulu: AIAA, 1991
[19]
Balbás J, Tadmor E, Wu C C. Non-oscillatory central schemes for one- and two-dimensional MHD equations: I [J]. J. Comput. Phys., 2004, 201(1):261-285
[20]
Xueshang F, Yufen Z, Yanqi H. A 3rd order WENO GLM-MHD scheme for magnetic reconnection [J]. Chin. J. Space Sci., 2006, 26(1): 1-7
[21]
Jiang G S, Wu C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics [J]. J. Comput. Phys., 1999, 150(2):561-594
[22]
Zachary A L, Malagoli A, Colella P. A higher-order Godunov method for multidimensional ideal magnetohydrodynamics [J]. SIAM J. Sci. Comput., 1994, 15(2):263-284
[23]
Tang H Z, Xu K. A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics [J]. J. Comput. Phys., 2000, 165(1):69-88
[24]
Zhu Yufen, Feng Xueshang. A new hybrid numerical scheme for two-dimensional ideal MHD equations [J]. Chin. Phys. Lett., 2012, 29(9):094703
[25]
Kifonidis K, Müller E. On multigrid solution of the implicit equations of hydrodynamics Experiments for the compressible Euler equations in general coordinates [J]. Astron. Astrophys., 2012, 544, A47
[26]
Turkel E. Preconditioning techniques in computational fluid dynamics [J]. Ann. Rev. Fluid Mech., 1999, 31(1): 385-416