全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机动目标跟踪的S修正无迹卡尔曼滤波算法

DOI: 10.16411/j.cnki.issn1006-7736.2015.02.015, PP. 84-86

Keywords: 机动目标跟踪,无迹卡尔曼滤波(UKF),S修正

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非线性观测条件下的非线性机动目标跟踪问题,借鉴线性滤波中卡尔曼滤波器的S修正防发散思想,对基本无迹卡尔曼滤波算法进行改进,提出S修正无迹卡尔曼滤波(SUKF)方法.对二维机动目标跟踪的仿真结果表明,该算法与基本UKF算法相比,跟踪精度大幅提高,但计算时间略有增加;与SPPF算法相比,跟踪精度提高,且计算复杂度大幅降低,计算时间大幅缩减.

References

[1]  JULIER S J. The spherical simplex unscented transformation[C]//IEEE. American Control Conference,2003.America:IEEE Press, 2003: 2430-2434.
[2]  JULIER S J,UHLMANN J K, “The scaled unscented transformation[C]//IEEE. American Control Conference,2002.America:IEEE Press, 2002: 4555-4559.
[3]  JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3) :401-422.
[4]  WAN E A, VANDER MERWE R. The unscented Kalman filter for nonlinear estimation[C]//IEEE. Adaptive Systems for Signal Processing, Communications and Control symposium 2000. Lake Louise, Alta: IEEE Press,2000:153-158.
[5]  朱安福, 景占荣, 高田等. 基于UKF的交互多模型算法[J]. 系统仿真学报, 2009, 21(3):655-657.ZHU An-fu, JING Zhan-rong,TIAN Gao,et al. The interacting multiple model algorithm based on UKF[J]. Journal of system simulation,2009,21(3):655-657.
[6]  程水英.无味变换与无味卡尔曼滤波[J].计算机工程与应用,2008,44(24):25-35.CHENG Shui-ying. The unscented transformation and the unscented Kalman filtering. Computer engineer and application,2008,44(24):25-35.
[7]  YU Zhi-jun,WEI Jian-ming,LIU Hai-tao. A new adaptive maneuvering target tracking algorithm using articial neural networks[C]//Hong Kong :2008 International Joint Conference on Neural Networks,2008:901-905.
[8]  张园.卡尔曼滤波及其军事应用[M].大连:海军大连舰艇学院出版社. 2010: 121-122.
[9]  敬忠良. 神经网络跟踪理论及应用[M]. 北京: 国防工业出版社. 1995: 40-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133