全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2013 

基于聚丙烯酰胺凝胶软印章的电化学纳米加工(英文)

, PP. 262-266

Keywords: 电化学刻蚀,软印章,聚丙烯酰胺水凝胶

Full-Text   Cite this paper   Add to My Lib

Abstract:

电化学刻蚀使用腐蚀性小的电解质溶液,且溶液可使用周期长,是一种环境友好的加工工艺.本文采用聚丙烯酰胺水凝胶(PAG)作为软印章,辅以优化工艺,将电化学湿印章技术(E-WETS)的加工精度从几十微米提高到了200纳米.将新配制的聚丙烯酰胺水凝胶浇注在具有纳米结构的软模板表面,固化后脱模并保存于0.2mol·L-1KCl溶液中,在合适电位和压力下,对硅片表面金膜进行电化学湿法刻蚀,分别研究了聚丙烯酰胺水凝胶的聚合条件、电化学加工电位以及水凝胶表面压力对加工结果的影响.实验表明,在最优条件下可加工出直径为200纳米的特征点阵结构,且该方法具有较好的可靠性和稳定性.

References

[1]  Campbell C J, Smoukov S K, Bishop K J M, et al. Reactive surface micropatterning by wet stamping[J]. Langmuir, 2005, 21(7): 2637-2640.
[2]  Tang J, Zhuang J L, Zhang L, et al. Cu micropatterning on n-Si(111) by selective electrochemical deposition using an agarose stamp[J]. Electrochimica Acta, 2008, 53(18): 5628-5631.
[3]  Zhang L, Ma X Z, Zhuang J L. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method [J]. Advanced Materials, 2007, 19(22): 3912-3918.
[4]  Tang J, Zhang L, Tian X C. Micromaching on copper and nickel by electrochemical wet stamping[J]. Journal of Micromechanics and Microengineering, 2010, 20(11): 115030-115035.
[5]  Sekine S, Nakanishi S, Miyake T, et al. Electrodes combined with an agarose stamp for addressable micropatterning[J]. Langmuir, 2010, 26(13): 11526-11529.
[6]  Cui X T, Zhou D D. Poly(3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 502-508.
[7]  Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116.
[8]  Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87.
[9]  Wang C, Chou S Y. Integration of metallic nanostructures in fluidic channels for fluorescence and Raman enhancement by nanoimprint lithography and lift-off on compositional resist stack[J]. Microelectronic Engineering, 2012, 98: 693-697.
[10]  Qin D, Xia Y N, Whitesides G M. Soft lithography for micro-and nanoscale patterning[J]. Nature Protocols, 2010, 5(3): 491-502.
[11]  Xia Y N, Whitesides G M. Soft lithography[J]. Angewandte Chemie-International Edition, 1998, 37 (5): 551-575.
[12]  Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastic stamp and an alkanethiol ink followed by chemical etching[J]. Applied Physics Letters, 1993, 63(14): 2002-2004.
[13]  Xia Y N, McClelland J J, Gupta R, et al. Replica molding using polymeric materials: A practical step toward nanomanufacturing [J]. Advanced Materials, 1997, 9 (2): 147-149.
[14]  Xia Y N, Whitesides G M. Fabrication of three-dimensional microstructures: Microtransfer molding [J]. Advanced Materials, 1996, 8(10): 837-840.
[15]  Kumar A, Whitesides G M. Sovent-assisted micro contact molding: A convenient method for fabricating three dimensional structures of polymeric materials[J]. Advanced Materials, 1997, 9(8): 651-654.
[16]  Baytekin B, Baytekin H T, Grzybowski B A. What really drives chemical reaction on contact charged surfaces[J]. Journal of The American Chemical Society, 2012, 134(17): 7223-7226.
[17]  Campbell C J, Smoukov S K, Bishop K J M, et al. Direct print of 3D and curvilinear micrometer-sized architectures into solid substrated with sub-micrometer resolution[J]. Advanced Materials, 2006, 18(15): 2004-2008.
[18]  Campbell C J, Fialkowski M, Klajn R. Color micro- and nanopatterning with counter-propagating reaction-diffusion fronts[J]. Advanced Materials, 2004, 16(21): 1912-1917.
[19]  Grzybowski B A, Bishop K J M, Campbell C J, et al. Micro-and nanotechnology via reaction-diffusion [J]. Soft Matter, 2005, 1(2): 114-128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133