全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

基于DFT计算的Pt(111)表面氧覆盖度和水合质子模型对氧还原反应路径的影响(英文)

DOI: 10.13208/j.electrochem.130894, PP. 206-218

Keywords: 最小能量路径,ORR机理,氧覆盖度,水合质子模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用基于平面波的密度泛函理论(DFT)计算研究了氧气分子在Pt(111)表面的吸附和解离,以及解离产物进一步质子化形成H2O的过程.通过使用不同尺寸的平板模型和在表面预吸附不同数量的氧原子,研究了氧覆盖度对氧还原反应(ORR)路径的影响,并对使用不同水合质子模型的计算结果进行了比较.研究结果表明:质子化的end-on化学吸附态OOH*的形成是ORR的初始步骤;OOH*能够转化形成非质子化的top-bridge-top化学吸附态O2*,或者解离形成吸附的O*物种.对不同氧覆盖度下各种可能步骤的活化能计算结果表明,O*的质子化形成OH*物种是ORR的速决步骤.增加氧覆盖度时,该步骤的活化能减少.此外,还发现使用比H7O3+更复杂的水合质子模型不会改变计算所得的反应路径.

References

[1]  Sha Y, Yu T H, Liu Y, et al. Theoretical study of solvent effects on the platinum-catalyzed oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2010, 1(5): 856-861.
[2]  Tripkovic V, Skulason E, Siahrostami S, et al. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations[J]. Electrochimica Acta, 2010, 55(27): 7975-7981.
[3]  Sha Y, Yu T H, Merinov B V, et al. Mechanism for oxygen reduction reaction on Pt3Ni alloy fuel cell cathode[J]. The Journal of Physical Chemistry C, 2012, 116(45): 21334-21342.
[4]  Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angewandte Chemie International Edition, 2006, 45(3): 402-406.
[5]  Wei G F, Fang Y F, Liu Z P. First principles tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12696-12705.
[6]  Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[7]  Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.
[8]  Methfessel M, Paxton A T. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1989, 40(6): 3616-3621.
[9]  Baroni S, Dal Corso A, de Gironcoli S, et al. PWSCF and PHONON: Plane-Wave Pseudo-Potential Codes[OL]. http://www.pwscf.org, 2001.
[10]  Kokalj A. XCrySDen—a new program for displaying crystalline structures and electron densities[J]. Journal of Molecular Graphics and Modelling, 1999, 17(3): 176-179.
[11]  Kokalj A, Causa M. Scientific visualization in computational quantum chemistry[C]//Proceedings of high performance graphics systems and applications european workshop. Bologna, Italy: CINECA-Interuniversity Consortium, 2000.
[12]  Kokalj A, Causà M. XCrySDen: (X-Window) CRYstalline Structures and DENsities[OL]. http://www-k3.ijs.si/kokalj/xc/XCrySDen.html, 2001.
[13]  Henkelman G, Jonsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. The Journal of Chemical Physics, 2000, 113(22): 9978-9985.
[14]  Henkelman G, Uberuaga B P, Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22), 9901-9904.
[15]  Ou L H, Yang F, Liu Y W, et al. First-principle study of the adsorption and dissociation of O2 on Pt(111) in acidic media[J]. The Journal of Physical Chemistry C, 2009, 113(48): 20657-20665.
[16]  Ou L H, Chen S L. Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT[J]. The Journal of Physical Chemistry C, 2013, 117(3): 1342-1349.
[17]  Bligaard T, N?rskov J K, Dahl S, et al. The Br?nsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004, 224(1): 206-217.
[18]  Zundel G. In the hydrogen bonds recent developments in theory and experiments[M]//Schuster P, Zundel G, Sandorfy C, Eds. II. Structure and spectroscopy. Amsterdam: North-Holland Publishing Company, 1976: 683-766.
[19]  Eigen M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: elementary processes[J]. Angewandte Chemie International Edition, 1964, 3(1): 1-19.
[20]  Marx D, Tuckerman M E, Hutter J, et al. The nature of the hydrated excess proton in water[J]. Nature, 1999, 397(6720): 601-604.
[21]  (a) Lozovoi A, Alavi A, Kohanoff J, et al. Ab initio simulation of charged slabs at constant chemical potential[J]. The Journal of Chemical Physics, 2001, 115(4): 1661-1669; (b) Filhola J S, Bocquet M L. Charge control of the water monolayer/Pd interface[J]. Chemical Physics Letters, 2007, 438(4-6): 203-207.
[22]  Thiel P A, Madey T E. The interaction of water with solid surfaces—fundamental aspects[J]. Surface Science Reports, 1987, 7(6-8): 211-385.
[23]  Henderson M A. Interaction of water with solid surfaces: Fundamental aspects revisited[J]. Surface Science Reports, 2002, 46(1-8): 5-308.
[24]  Ogasawara H, Brena B, Nordlund D, et al. Structure and bonding of water on Pt(111)[J]. Physical Review Letters, 2002, 89(27): 276102.
[25]  (a) Schnur S, Gro? A. Properties of metal–water interfaces studied from first principles[J]. New Journal of Physics, 2009, 11(12): 125003; (b) Roudgar A, Gro? A. Water bilayer on the Pd/Au(111) overlayer system: Coadsorption and electric field effects[J]. Chemical Physics Letters, 2005, 409(4-6): 157-162.
[26]  N?rskov J K, Rossmeisl J, Logadotir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[27]  Greeley J, Stephens I E L, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nature Chemistry, 2009, 1(7): 552-556.
[28]  Mazumder V, Chi M F, More K L, et al. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles[J]. Angewandte Chemie International Edition, 2010, 49(49): 9368-9372.
[29]  Stamenkovic V, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497.
[30]  Koh S, Strasser P. Electrocatalysis on bimetallic surfaces:? Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. Journal of the American Chemical Society, 2007, 129(42): 12624-12625.
[31]  Chen S, Sheng W C, Yabuuchi N, et al. Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: Atomically resolved chemical compositions and structures[J]. The Journal of Physical Chemistry C, 2009, 113(3): 1109-1125.
[32]  Wakisaka W, Suzuki H, Mitsui S, et al. Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS[J]. The Journal of Physical Chemistry C, 2008, 112(7): 2750-2755.
[33]  Nilekar A U, Mavrikakis M. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces[J]. Surface Science, 2008, 602(14): L89-L94.
[34]  Janik M J, Taylor C D, Neurock M. First-principles analysis of the initial electroduction steps of oxygen over Pt(111)[J]. Journal of the Electrochemical Society, 2009, 156(1): B126-B135.
[35]  Panchenko A, Koper M T M, Shubina T E, et al. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces[J]. Journal of the Electrochemical Society, 2004, 151(12): A2016-A2027.
[36]  Neyerlin K C, Gu W, Jorne J, et al. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC[J]. Journal of the Electrochemical Society, 2006, 153(10): A1955-A1963.
[37]  Sidik R A, Anderson A B. Density functional theory study of O2 electroreduction when bonded to a Pt dual site[J]. Journal of Electroanalytical Chemistry, 2002, 528(1-2): 69-76.
[38]  Hyman M P, Medlin J W. Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory[J]. The Journal of Physical Chemistry B, 2006, 110(31): 15338-15344.
[39]  (a) Wang Y X, Balbuena P B. Ab initio molecular dynamics simulations of the oxygen reduction reaction on a Pt(111) surface in the presence of hydrated hydronium (H3O)+(H2O)2:?Direct or series pathway?[J]. The Journal of Physical Chemistry B, 2005, 109(31), 14896-14907; (b) Wang Y, Balbuena P B. Roles of proton and electric field in the electroreduction of O2 on Pt(111) surfaces:? Results of an ab-initio molecular dynamics study[J]. The Journal of Physical Chemistry B, 2004, 108(14): 4376-4384.
[40]  Qi L, Yu J G, Li J. Coverage dependence and hydroperoxyl-mediated pathway of catalytic water formation on Pt(111) Surface[J]. The Journal of Chemical Physics, 2006, 125(5): 054701.
[41]  Zhang T, Anderson A B. Oxygen reduction on platinum electrodes in base: Theoretical study[J]. Electrochimica Acta, 2007, 53(2): 982-989.
[42]  Jocob T, Goddard W A. Water formation on Pt and Pt-based alloys: A theoretical description of a catalytic reaction[J]. ChemPhysChem, 2006, 7(5): 992-1005.
[43]  Wang J X, Zhang J L, Adzic R R. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media[J]. The Journal of Physical Chemistry A, 2007, 111(49): 12702-12710.
[44]  Yeager E, Razaq M, Gervasio D, et al. The electrolyte factor in O2 reduction electrocatalysis[C]//Proceedings of the workshop on structural effects in electrocatalysis and oxygen electrochemistry. Pennington, NJ: The Electrochemical Society, 1992: 440.
[45]  (a) Damjanovic A, Brusic V, Bockris J O M. Mechanism of oxygen reduction related to electronic structure of gold-palladium alloy[J]. The Journal of Physical Chemistry, 1967, 71(8): 2741-2742; (b) Damjanovic A, Brusic V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes[J]. Electrochimica Acta, 1967, 12(6): 615-628.
[46]  Damjanovic A. Progress in the studies of oxygen reduction during the last thirty years[M]//Murphy O J, Srinivasan S, Conway B E, Eds. Electrochemistry in Transition. New York: Plenum Press, 1992: 107.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133