Geem Z W,Kim J H,Loganathan G V.A new heuristic optimization algorithm:harmony search[J].Simulation,2001,76(2):60-68.
[2]
Mahdavi M,Fesanghary M,Damangir E.An improved harmony search algorithm for solving optimization problems[J].Applied Mathematics and Computation,2007,188(2):1567-1579.
[3]
Kattan A,Abdullah R.A dynamic self-adaptive harmony search algorithm for continuous optimization problems[J].Applied Mathematics and Computation,2013,219(16):8542-8567.
[4]
Omran M G H,Mahdavi M.Global-best harmony search[J].Applied Mathematics and Computation,2008,198(2):643-656.
[5]
Yadav P,Rajesh K,Panda S K,et al.An intelligent tuned harmony search algorithm for optimization[J].Information Sciences,2012,196:47-72.
[6]
Pan Q K,Suganthan P N,Tasgetiren M F,et al.A self-adaptive global best harmony search algorithm for continuous optimization problems[J].Applied Mathematics and Computation,2010,216(3):830-848.
[7]
Zou D,Gao L,Wu J,et al.Novel global harmony search algorithm for unconstrained problems[J].Neurocomputing ,2010,73(16):3308-3318.
[8]
EI-Abd M.An improved global-best harmony search algorithm[J].Applied Mathematics and Computation,2013,222(5):94-106.
[9]
Xiang W,An M,Li Y,et al.An improved global-best harmony search algorithm for faster optimization[J].Expert Systems with Applications,2014,41(13):5788-5803.
[10]
Valian E,Tavakoli S,Mohanna S.An intelligent global harmony search approach to continuous optimization problems[J].Applied Mathematics and Computation,2014,232(3):670-684.(上接第1397页)4结论本文从可靠性的角度,建立了一个考虑车辆随机行驶时间的单线路公交时刻表设计期望值模型,模型中考虑了公交运营者主观偏好,采用Monte Carlo仿真和不等式约束的方法将期望值模型转化为线性规划模型. 通过一个实例,分析了模型中参数的灵敏度. 结果发现,车辆运行时间的不确定性将极大地增加公交系统的运营成本,系统总成本是随机运行时间方差的凸函数.