全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进的新颖全局和声搜索算法

DOI: 10.3969/j.issn.1005-3026.2015.10.008, PP. 1403-1407

Keywords: 和声搜索,范数,多样性,自适应,变异

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高和声搜索算法的寻优性能,提出了改进的新颖全局和声搜索(INGHS)算法.通过差分向量范数定义和声记忆库多样性,以和声记忆库的多样性信息为指导实现位置动态更新,并结合变异操作更新和声记忆库.算法采用动态位置更新策略产生新和声,在寻优早期具有较好的全局搜索性能,在寻优后期具有较好的局部搜索性能,提高了算法跳出局部最优的能力.利用7个标准测试函数对所提算法与目前已知文献中优秀的改进HS算法进行性能测试,测试结果表明所提算法具有较好的寻优性能.

References

[1]  Geem Z W,Kim J H,Loganathan G V.A new heuristic optimization algorithm:harmony search[J].Simulation,2001,76(2):60-68.
[2]  Mahdavi M,Fesanghary M,Damangir E.An improved harmony search algorithm for solving optimization problems[J].Applied Mathematics and Computation,2007,188(2):1567-1579.
[3]  Kattan A,Abdullah R.A dynamic self-adaptive harmony search algorithm for continuous optimization problems[J].Applied Mathematics and Computation,2013,219(16):8542-8567.
[4]  Omran M G H,Mahdavi M.Global-best harmony search[J].Applied Mathematics and Computation,2008,198(2):643-656.
[5]  Yadav P,Rajesh K,Panda S K,et al.An intelligent tuned harmony search algorithm for optimization[J].Information Sciences,2012,196:47-72.
[6]  Pan Q K,Suganthan P N,Tasgetiren M F,et al.A self-adaptive global best harmony search algorithm for continuous optimization problems[J].Applied Mathematics and Computation,2010,216(3):830-848.
[7]  Zou D,Gao L,Wu J,et al.Novel global harmony search algorithm for unconstrained problems[J].Neurocomputing ,2010,73(16):3308-3318.
[8]  EI-Abd M.An improved global-best harmony search algorithm[J].Applied Mathematics and Computation,2013,222(5):94-106.
[9]  Xiang W,An M,Li Y,et al.An improved global-best harmony search algorithm for faster optimization[J].Expert Systems with Applications,2014,41(13):5788-5803.
[10]  Valian E,Tavakoli S,Mohanna S.An intelligent global harmony search approach to continuous optimization problems[J].Applied Mathematics and Computation,2014,232(3):670-684.(上接第1397页)4结论本文从可靠性的角度,建立了一个考虑车辆随机行驶时间的单线路公交时刻表设计期望值模型,模型中考虑了公交运营者主观偏好,采用Monte Carlo仿真和不等式约束的方法将期望值模型转化为线性规划模型. 通过一个实例,分析了模型中参数的灵敏度. 结果发现,车辆运行时间的不确定性将极大地增加公交系统的运营成本,系统总成本是随机运行时间方差的凸函数.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133