全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分块独立分量分析的人脸识别

DOI: 10.11834/jig.20090920

Keywords: 分块,独立分量分析(ICA),特征提取,人脸识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于分块独立分量分析(BICA)的特征提取方法。该方法通过将人脸分块降低了光照条件、人脸表情等外在因素对人脸识别的影响,并先后将分块后重组的矩阵的行和列作为训练样本提取独立分量,由于训练样本维数很小,因此它降低了传统独立分量分析(ICA)方法中存在的高维小样本问题产生的识别错误率,同时减少了识别时间。在Yale人脸库和AR人脸库上验证了该算法的有效性。

References

[1]  Kirby M,Sirovicb L,Application of the KL procedure for the characterization of human faces,IEEE Transactions on Pattern Analysis and Machine Intelligence,1990(1).
[2]  Bartlett M S,Movellan J R,Sejnowski T J,Face recognition by independent component analysis,IEEE Transactions on Neural Networks,2002(6).
[3]  Hyvarinen A,Survey on independent component analysis,Neural Computing Surveys,1999(2).
[4]  Draper B A,Baek K,Bartlett M S,Recognizing faces with PCA and ICA,COMPUTER VISION AND IMAGE UNDERSTANDING,2003(1/2).
[5]  Liu C J,Enhanced independent component analysis and its application to content based face image recognition,IEEE Transactions on Neural Networks,2003(4).
[6]  Gao Q,Zhang Lei,Zhang David,Sequential row-column independent component analysis for face recognition,NEUROCOMPUTING,2009(4).
[7]  Hyvarinen A,Fast and robust fixed-point algorithm for independent component analysis,IEEE Transactions on Neural Networks,1999(3).
[8]  陈才扣,刘永俊,杨静宇,改进的二维最大散度差线性鉴别分析及人脸识别,南京,2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133