全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于L1的图像自适应分解变分方法

DOI: 10.11834/jig.20090610

Keywords: 图像分解,变分法,局部自适应

Full-Text   Cite this paper   Add to My Lib

Abstract:

变分方法可以将图像分解为同类部分u和振荡部分v,但传统的图像分解方法会导致分解结果的对比度发生改变,并产生阶梯效应。为了更好地进行图像分解和去噪,提出了一种基于L1的可根据图像局部信息自适应的图像分解变分方法。该方法首先使用L1范数作为分解模型中的逼近项,以便使分解结果能保持原始图像边缘和保持对比度不变;然后通过引入图像局部特征的自适应函数来削减同类部分u的阶梯效应。实验证明,新方法比传统方法能更好地应用于图像分解和图像的噪声去除。

References

[1]  Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60:259-268.
[2]  Gousseau Y, Morel J-M. Are natural images of bounded variation[J]. SIAM Journal on Mathematics, 2001, 33(3) :634-648.
[3]  Vese L, Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. Journal of Scientific Computing, 2003, 19( 11 ) :553-572.
[4]  Aubert G, Aujol J F. Modeling very oscillating signals. Application to image processing[J]. Applied Mathematics and Optimization, 2005, 51(2) :163-182.
[5]  Strong D, Chan T F. Edge-preserving and scale-dependent properties of total variation regulafization [J] . Inverse Problem, 2003, 19: 165-187.
[6]  Osher S, Esedoglu S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model[J]. Communications on Pure and Applied Mathematics, 2004, 57 : 1609-1626.
[7]  Chambolle A, Lions P L. Image recovery via total variation minimization and related problems [J]. Numerical Mathematics, 1997, 76 ( 2 ) : 167-188.
[8]  Le T M, Vese L. Image decomposition using total variation and div (BMO) [J].Multiseale Model and Simulation, 2005, 4 (2) : 390-423.
[9]  Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[M]. Providence, Rhode Island, USA : American Mathematical Society, 2002.
[10]  Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H^-1 norm [J]. Muhiscale Model and Simulation, 2003, 1 (3) :349-370.
[11]  Chan T, Esedoglu S. Aspects of total variation regularized L^1 function approximation[J]. SIAM Journal on Mathematics, 2005, 65 (5) : 1817-1837.
[12]  Blomgren P, Chan T F, Mulet P, et al. Variational PDE models and methods for image processing [J]. In: 18th Biennial Conference on Numerical Analysis[C], Dundee, Scotland, 1999, June 29-July 2.
[13]  Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration [J]. SIAM Journal on Mathematics, 2004, 66(4) :1383-1406.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133