Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60:259-268.
[2]
Gousseau Y, Morel J-M. Are natural images of bounded variation[J]. SIAM Journal on Mathematics, 2001, 33(3) :634-648.
[3]
Vese L, Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. Journal of Scientific Computing, 2003, 19( 11 ) :553-572.
[4]
Aubert G, Aujol J F. Modeling very oscillating signals. Application to image processing[J]. Applied Mathematics and Optimization, 2005, 51(2) :163-182.
[5]
Strong D, Chan T F. Edge-preserving and scale-dependent properties of total variation regulafization [J] . Inverse Problem, 2003, 19: 165-187.
[6]
Osher S, Esedoglu S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model[J]. Communications on Pure and Applied Mathematics, 2004, 57 : 1609-1626.
[7]
Chambolle A, Lions P L. Image recovery via total variation minimization and related problems [J]. Numerical Mathematics, 1997, 76 ( 2 ) : 167-188.
[8]
Le T M, Vese L. Image decomposition using total variation and div (BMO) [J].Multiseale Model and Simulation, 2005, 4 (2) : 390-423.
[9]
Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[M]. Providence, Rhode Island, USA : American Mathematical Society, 2002.
[10]
Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H^-1 norm [J]. Muhiscale Model and Simulation, 2003, 1 (3) :349-370.
[11]
Chan T, Esedoglu S. Aspects of total variation regularized L^1 function approximation[J]. SIAM Journal on Mathematics, 2005, 65 (5) : 1817-1837.
[12]
Blomgren P, Chan T F, Mulet P, et al. Variational PDE models and methods for image processing [J]. In: 18th Biennial Conference on Numerical Analysis[C], Dundee, Scotland, 1999, June 29-July 2.
[13]
Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration [J]. SIAM Journal on Mathematics, 2004, 66(4) :1383-1406.