图象分析中的松驰标记法
DOI: 10.11834/jig.19980222
Keywords: 概率松驰,随机松驰,马尔科夫随机场,吉布斯分布,最大熵
Abstract:
松驰标记法是指对图中的每个目标进行标记指派,利用先验上下文信息进行迭代,寻求最大协调标记集的一种方法。此文推导了一种新的概率松驰法,分析了随机松驰法的迭代公式,利用马尔科夫随机场(MRF)与吉布斯(Gibbs)分布的等价性来计算局部特性概率,用最大熵(ME)原理对条件邻域概率进行估计。最后对概率松驰法和随机松驰法进行了比较。
References
[1] | Hummel R A,Zuker S W. On the foundations of relaxation labeling processes. IEEE Trans. Patt. Anal. Mach. Intell. 1983,PAMI-5:267~287.
|
[2] | Geman S,Gemini D. Stochastic relaxation, Gibes distributions,and the Bayesian restoration of images. IEEE Trans. Patt. Anal.Mach. Intell. 1984, PAMI-6: 721~741.
|
[3] | Pelkowitz L. A continuous relaxation labeling algorithm for Markov random fields. IEEE Trans. Syst. Man Cybern. 1990,SMC~20:709~714.
|
[4] | Rosenfeld A, Hummel R A,Zuker S W. Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybern, 1976,SMC-6:420~453.
|
[5] | Peleg S. A new probabilistic relaxation scheme. IEEE Trans.Patt. Anal. Mach. Intell. 1980,PAMI-2:362~369.
|
[6] | Winkler G. Image Analysis, Random Fields and Dynamic Monte Carlo Methods, New York: Springer~Verlag, 1995.
|
Full-Text