全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

面向任务的医学图象压缩

DOI: 10.11834/jig.200107148

Keywords: 医学图象压缩,面向任务,小波变换,多门限小波编码,医学成象技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

现代医学成象技术产生了大量的医学数字图象,而这些图象的存储和传输却存在很大问题,传统上,采用无损压缩编码方法改善这些图象的存储和传输效率,全为了达到较高的压缩比,必须采用有损压缩,然而,有损压缩会给图象带来失真,必须谨慎使用,医学图象通常,由二类区域构成,其中一类包含重要的诊断信息,由于其错误描述的代价非常高,因此提供一种高重的质量的压缩方法更加必要,另一类区域的信息较为次要,其压缩的目标则要求达到尽可能高的压缩比,为了既能保证感兴趣区图象的重构质量,又能获得较高压缩比,提出了一种面向任务的医学图象压缩算法,该方法把无损压缩和有损压缩统一在小波变换的框架下,对感兴趣区采用无损压缩,而对其他部分则采用有损压缩,实验证明,该压缩方法在压缩比和重建图象质量上均达到了较好的性能。

References

[1]  [3]Burt J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Trans. on Communications, 1983, 31 (4): 532 ~540.
[2]  [4]Kunt M, Ikonmopoulos A, Kocher M. Second-generation image coding techniques. Proceedings of the IEEE, 1985,31 (4): 549 ~574.
[3]  [6]Jacquin A E. Image coding based on a fractal theory of iterated contractive image transform. IEEE Trans. on Image Processing,1992,1(1):18~30.
[4]  [7]Dony R D, Haykin S. Neural networks approaches to image compression. Proceedings of the IEEE, 1995,83(2):288~303.
[5]  [9]Mallat S Q. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989, 11(7):674~693.
[6]  [10]Antonini M, Barlaud M, Mathieu P, Daubechies I. Image coding using wavelet transform. IEEE Trans. on Image Processing, 1992,1 (2) :205~218.
[7]  [12]Unser M, Aldroubi A. A review of wavelet in biomedical applications. Proceedings of the IEEE, 1996, 84(4):626~638.
[8]  [14]Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Processing, 1993, 41(12):3445~3462.
[9]  [16]Shen L, Rangayyan R M. Segmentation-baesd lossless coding of medical images. Proc. SPIE:Visual Communications and Image Procession\'95,1995,2501 (2): 974~ 982.
[10]  [1]Kuduvalli G R, Rangayyan R M. Performance analysis of reversible image compression techniques for high resolution digital teleradiology. IEEE Trans. on Medical Imaging, 1992,11(3) :430~445.
[11]  [2]Nasrabadi N M, King R A. Image coding using vector quantization: A review. IEEE Trans. on Communications,1988,36(8) :957~971.
[12]  [5]Kunt M, Bqehard M, Leonardi R. Recent resuJts in high-compression image coding. IEEE Trans. on Circuits and Systems, 1987,34 ( 11 ): 1306 ~ 1336.
[13]  [8]Woods J W, O\'Neil S D. Subband coding of images. IEEE Trans. on Acoust. , Speech, Signal Processing, 1986,34 (5):1278~1288.
[14]  [11]Averbuch A, Lazar D, Israeli M. Image compression using wavelet transform and multiresolution decomposition. IEEE Trans. on Image Processing, 1996, 5(1):4~15.
[15]  [13]Said A, Pearlman W A. An image multiresolution representation for lossless and lossy compression. IEEE Trans. on Image Processing, 1996, 5(9):1303~1310.
[16]  [15]Kin M B, Cho Y D, Kim D K et al. On the compression of medical images with regions of interest (ROIs). Proc. SPIE:Visual Communications and Image Procession\'95, 1995,2501 (1): 733~ 744.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133