[1]Rumethart D E, McCelland J L, Eds. Parallel distributed processing 1: Foundation[M]. Cambridge, MA: MIT Press,1986:318~362.
[2]
[3]Katsaggelos A K. Digital image restoration [M]. Berlin,Germany: Springer Verlag. 1991.
[3]
[4]Zhou Y T, Chellapa R, Vaid A et al. Image restoration using a neural network [J]. IEEE Transactions on ASSP, 1988,36 (7):1141~1151.
[4]
[8]Sun Y, Li J G, Yu S Y. Improvement on performance of modified Hopfield network for image restoration [J]. IEEE Transactions on Image Processing, 1995,4 (5): 688~492.
[5]
[9]Venetianer P L, Werblin F, Roska T et al. Analogic CNN algorithns for some image compression and restoration tasks[J].IEEE Transactions on Circuits and Systems, 1995, 42 (5):278~284.
[6]
[12]Stuart W. Perry, Ling Guan. Weight assignment for adaptive image restoration by neural networks[J]. IEEE Transactions on Neural Networks, 2000,11(1):156~170.
[17]Ozkam M K, Erdem A T, Sezan M I. Efficient muhiframe Wiener restoration of blurred and noisy image sequences [J].IEEE Transactions on Image Processing, 1992,1 (4): 453~478.
[10]
[19]Citrin S, Azimi-Sadjadi M R. A full-plane block Kalman filter for image restoration [J]. IEEE Transactions on Image Processing, 1992,1 (4) :488~495.
[11]
更多...
[12]
[21]Hunt B R. The application of constrained least squares estimation to image restoration by digital computer [J]. IEEE Transactions on Computers, 1973,c-22(9):805~812.
[13]
[23]Mallikarjuna H S, Chaparro L F. Iterative composite filtering for image restoration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992,14(6): 674~677.
[14]
[25]Chow T W S, Li X D, Cho S Y. Improved blind image restoration scheme using recurrent filtering [J]. IEE Proc.-Vis. , Image Signal Processing, 2000,147(1): 23~28.
[15]
[27]Hunt B R. A matrix theory proof of the discrete convolution theorem[J]. IEEE Trans., 1971, AU-19(4): 285~288.
[16]
[28]Reeves S J, Mesereau R M. Automatic assessment of constraint sets in image restoration [J]. IEEE Transactions on Image Processing, 1992,1 (1): 1992,119~122.
[17]
[30]Gokmen M, Li C. Edge detection and surface reconstruction using refined regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(5) : 492~498.
[18]
[34]Thompson A M, Brown J C, Kay J W et al. A study of methods of choosing the smoothing parameter in image restoration by regularization[J]. IEEE Transactions on Pattern Anal. Machine Intell. , 1991,13(7) :703~714.
[19]
[35]Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation [J]. IEEE Transactions on Image processing, 1992,1(7) :322~336.
[20]
[37]You Y, Kaveh M. A regularization approach to joint blur identification image restoration[J]. IEEE Transactions on Image Processing, 1996,5(4) :416~428.
[43]Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991,2(2) :302~309.
[23]
[44]Heiss M, Kampl S. Multiplication-free radial basis function network [J]. IEEE Transactions on Neural Networks, 1996,7 (6): 1461~1464.
[24]
[47]Bianchini M, Frasconi P, Gori M. Learning without local minima in radical basis function networks [J]. IEEE Transactions on Neural Networks, 1995,6(3): 749~756.
[25]
[49]Chua L O, Yang L. Cellular neural network:Theory[J]. IEEE Transactions on Circuits and System, 1988, 35 (10):1257~1272.
[26]
[50]Chua L O, Yang L. Cellular neural network: Application[J].IEEE Transactions on Circuits and System, 1988, 35 (10):1273~1290.
[55]Sung H K, Choi H M. Nonlinear restoration of spatially varying blurred images using self-organising neural network [A]. In:Proc. International Conference on Acoustics,Speech and Signal Processing[C], Seattle, Wash., USA, May 12~15, 1998,2:1097:
[30]
[57]Szu H H, Kadambe S. Neural network adaptive wavelets for signal representation and classification[J]. Optical Engineering,1992,31 (9):1907~1919.
[2]Andrews H C, Hunt B R. Digital image restoration [M].Englewood Cliffs, NJ: Prentice Hall, 1977.
[37]
[5]Paik J K, Katsaggelos A K. Image restoration using a modified Hopfield network [J]. IEEE Transactions on Image Processing,1992,1(1) :49~63.
[38]
[6]Ronald J S, Michael A F. Regularized image reconstruction using SVD and a neural network method for matrix inversion[J].IEEE Transactions on signal processing, 1993, 41 (10):3074~3077.
[39]
[7]Perry S W, Guan L. Neural network restoration of images suffering space-variant distortion[J]. Electron. Lett., 1995,31(16) :1358~1359.
[40]
[10]Qian W, Clarke L P. Wavelet-Based neural network with fuzzylogic adaptivity for nuclear image restoration[J]. Proc. of IEEE,1996,84(10) :1458~1473.
[41]
[11]Wong H S, Guan L. Adaptive regularization in image restoration using a model-based neural network[J]. Opt. Eng., 1997,36(12):3297~3308.
[18]Wu W, Kundu A. Image estimation using fast modified reduced update Kalman filter [J]. IEEE Transactions on Signal Processing. 1992,40(4):915~926.
[45]
[20]Koch S, Kaufman H, Biemond J. Restoration of spatially varying blurred images using multiple model-based extended Kalman filters [J]. IEEE Transactions on Image Processing,1995,4(4) :520~523.
[46]
[22]Erler K, Jernigan E. Adaptive image restoration using recursive image filters [J]. IEEE Transactions on Signal Processing,1994,42(7):1877~1881.
[47]
[24]Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering [J]. IEEE Transactions on Signal Processing, 1998,46(2) :156~161.
[48]
[26]Eng H L, Ma K K. Noise adaptive soft-switching median filter [J]. IEEE Transactions on Image Processing, 2001, 10(2):242~251.
[49]
[29]GoKmen M, Li C. Edge detection using refined regularization [A]. In: Proc. 1991 IEEE Computer Society Conference of Computer Vision and Pattern Recognition [C], Maui, Hawai,USA, June 1991.
[50]
[31]Zervakis M E, Venetsanopoulos A N. Iterative least squares estimators in nonlinear image restoration [J]. IEEE Trans.Signal Processing, 1992,40 (4): 927~945.
[51]
[32]Hopfield J J. Tank D W. Neural computation of decisions in optimization problems[J]. Biol. Cybern. , 1985,52:141~152.
[52]
[33]Karayiannis N B,Venetsanopoulos A N. Regularization theory in image restoration The stabilizing functional approach[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(7):1155~1179.
[53]
[36]Kang M G, Katsaggelos A K. General choice of the regularization functional in regularized image restoration [J].IEEE Transactions on Image Process, 1995,4(5);594~603.
[54]
[38]Murat B, Misha E K, Eric L M. Wavelet domain image restoration with adaptive edge-preserving regularization [J].IEEE Transactions on Image Processing, 2000,9 (4) : 597~608.
[41]Chan T F, Wong C K. Total variation blind deconvolution[J].IEEE Transactions on Image Processing, 1998,7 (3) : 370~395.
[57]
[42]Goles-Chacc E, Fogelman-Soulie F, Pellegin D. Decreasing energy function as a tool for studying threshold networks [J].Discrete Application Mathmatic, 1985,12 : 261~277.
[58]
[45]Rosenblum M, Yacoob Y, Davis L S. Human expression recognition from motion using a radial basis function network architecture[J]. IEEE Transactions on Neural Networks, 1996,7(5) :1121~1138.
[59]
[46]Lee S, Pan J C. Unconstrained handwritten numeral recognition based on radial basis competitive and cooperative networks with spatio-temporal feature representation[J]. IEEE Transactions on Neural Networks, 1996,7(2):455~474.