全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

神经网络图象原复方法的研究进展

DOI: 10.11834/jig.2002011334

Keywords: 神经网络,图象复原,点扩展函数,正则化参数,噪声,图象处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

对退化图象的复原问题,特别是对盲图象的复原问题,由于其有广泛的应用前景,因此引起了众多学者的研究兴趣,神经网络因其固有的优点,一直备受各领域研究者的重视,其在图像复原领域的应用也越来越受到广泛的关注,而且其发展正在从对“半盲图象”的复原逐步向对“盲图象”复原过渡,为了使人们对图象复原方法有一系统的了解,以便对从事该项研究的人员有所借鉴,首先简要介绍了图象复原的背景知识,因为只有了解这些基本的概念,理论和方法,同时了解了当前图象复原的其他方法的现状后,才能很好地理解神经网络图象复原的长处和不足,才能把握图象复原的全貌,然后,对神经网络图象复原的数学模型和方法进行了简短的叙述;最后,专注于神经网络图象复原,重点地对这一领域的背景,现有算法,研究进展和现状进行了综述,并展望了今后研究发展的方向。

References

[1]  [1]Rumethart D E, McCelland J L, Eds. Parallel distributed processing 1: Foundation[M]. Cambridge, MA: MIT Press,1986:318~362.
[2]  [3]Katsaggelos A K. Digital image restoration [M]. Berlin,Germany: Springer Verlag. 1991.
[3]  [4]Zhou Y T, Chellapa R, Vaid A et al. Image restoration using a neural network [J]. IEEE Transactions on ASSP, 1988,36 (7):1141~1151.
[4]  [8]Sun Y, Li J G, Yu S Y. Improvement on performance of modified Hopfield network for image restoration [J]. IEEE Transactions on Image Processing, 1995,4 (5): 688~492.
[5]  [9]Venetianer P L, Werblin F, Roska T et al. Analogic CNN algorithns for some image compression and restoration tasks[J].IEEE Transactions on Circuits and Systems, 1995, 42 (5):278~284.
[6]  [12]Stuart W. Perry, Ling Guan. Weight assignment for adaptive image restoration by neural networks[J]. IEEE Transactions on Neural Networks, 2000,11(1):156~170.
[7]  [14]王磊,戚飞虎,莫玉龙.精确复原退化图象的连续Hopfield网络研究[J].上海交通大学学报,1997,31(12):43~46.
[8]  [16]冯久超,黄海东.基于神经网络的盲图象恢复[J].计算机科学,2000,27(1):67~68.
[9]  [17]Ozkam M K, Erdem A T, Sezan M I. Efficient muhiframe Wiener restoration of blurred and noisy image sequences [J].IEEE Transactions on Image Processing, 1992,1 (4): 453~478.
[10]  [19]Citrin S, Azimi-Sadjadi M R. A full-plane block Kalman filter for image restoration [J]. IEEE Transactions on Image Processing, 1992,1 (4) :488~495.
[11]  更多...
[12]  [21]Hunt B R. The application of constrained least squares estimation to image restoration by digital computer [J]. IEEE Transactions on Computers, 1973,c-22(9):805~812.
[13]  [23]Mallikarjuna H S, Chaparro L F. Iterative composite filtering for image restoration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992,14(6): 674~677.
[14]  [25]Chow T W S, Li X D, Cho S Y. Improved blind image restoration scheme using recurrent filtering [J]. IEE Proc.-Vis. , Image Signal Processing, 2000,147(1): 23~28.
[15]  [27]Hunt B R. A matrix theory proof of the discrete convolution theorem[J]. IEEE Trans., 1971, AU-19(4): 285~288.
[16]  [28]Reeves S J, Mesereau R M. Automatic assessment of constraint sets in image restoration [J]. IEEE Transactions on Image Processing, 1992,1 (1): 1992,119~122.
[17]  [30]Gokmen M, Li C. Edge detection and surface reconstruction using refined regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(5) : 492~498.
[18]  [34]Thompson A M, Brown J C, Kay J W et al. A study of methods of choosing the smoothing parameter in image restoration by regularization[J]. IEEE Transactions on Pattern Anal. Machine Intell. , 1991,13(7) :703~714.
[19]  [35]Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation [J]. IEEE Transactions on Image processing, 1992,1(7) :322~336.
[20]  [37]You Y, Kaveh M. A regularization approach to joint blur identification image restoration[J]. IEEE Transactions on Image Processing, 1996,5(4) :416~428.
[21]  [39]Kundur D, Hatzinakos. Blind image deconvolution[J]. IEEE Signal Processing Magazine, 1996,13(May) :43~64.
[22]  [43]Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991,2(2) :302~309.
[23]  [44]Heiss M, Kampl S. Multiplication-free radial basis function network [J]. IEEE Transactions on Neural Networks, 1996,7 (6): 1461~1464.
[24]  [47]Bianchini M, Frasconi P, Gori M. Learning without local minima in radical basis function networks [J]. IEEE Transactions on Neural Networks, 1995,6(3): 749~756.
[25]  [49]Chua L O, Yang L. Cellular neural network:Theory[J]. IEEE Transactions on Circuits and System, 1988, 35 (10):1257~1272.
[26]  [50]Chua L O, Yang L. Cellular neural network: Application[J].IEEE Transactions on Circuits and System, 1988, 35 (10):1273~1290.
[27]  [52]曾朝辉.CNN在图象处理中的应用[D][硕士论文].北京:北京大学电子系,1995.
[28]  赵建业,余道衡.用细胞神经网络实现图象恢复的-种新方法[J].电子科学学刊,1999,21(2):168-174.
[29]  [55]Sung H K, Choi H M. Nonlinear restoration of spatially varying blurred images using self-organising neural network [A]. In:Proc. International Conference on Acoustics,Speech and Signal Processing[C], Seattle, Wash., USA, May 12~15, 1998,2:1097:
[30]  [57]Szu H H, Kadambe S. Neural network adaptive wavelets for signal representation and classification[J]. Optical Engineering,1992,31 (9):1907~1919.
[31]  [59]李银国,张邦礼,曹长修.小波神经网络及其结构设计方法[J].模式识别与人工智能.1997,10(3):197~205.
[32]  [62]徐晓霞,陈涛,王晓升.基于正交最小二乘法的小波神经网络[J].电子学报,1998,26(10):115~117.
[33]  [64]Delyon B, Juditsky A, Benveniste A. Accuracy analysis for wavelet approximations [J]. IEEE Transactions on Neural Networks, 1995,6(2) :332~348.
[34]  [66]Zhang Q H, Benveniste A. Approximation by nonlinear wavelet networks[A]. In:Proc. IEEE ICASSP[C], Toronto, Canada,1991,5:3417~3420.
[35]  [67]谢开贵,柏森,周家启.多项式前向神经网络[J].重庆大学学报,2001,24(3):76~79.
[36]  [2]Andrews H C, Hunt B R. Digital image restoration [M].Englewood Cliffs, NJ: Prentice Hall, 1977.
[37]  [5]Paik J K, Katsaggelos A K. Image restoration using a modified Hopfield network [J]. IEEE Transactions on Image Processing,1992,1(1) :49~63.
[38]  [6]Ronald J S, Michael A F. Regularized image reconstruction using SVD and a neural network method for matrix inversion[J].IEEE Transactions on signal processing, 1993, 41 (10):3074~3077.
[39]  [7]Perry S W, Guan L. Neural network restoration of images suffering space-variant distortion[J]. Electron. Lett., 1995,31(16) :1358~1359.
[40]  [10]Qian W, Clarke L P. Wavelet-Based neural network with fuzzylogic adaptivity for nuclear image restoration[J]. Proc. of IEEE,1996,84(10) :1458~1473.
[41]  [11]Wong H S, Guan L. Adaptive regularization in image restoration using a model-based neural network[J]. Opt. Eng., 1997,36(12):3297~3308.
[42]  余英林,李怀东,马丽红.两种图象恢复的新方法[J].通信学报,1992,13(4):40-48.
[43]  [15]屈志毅,沃焱,任志宏.基于交替迭代和神经网络的盲目图象恢复[J].计算机学报,2000,23(4):410~413.
[44]  [18]Wu W, Kundu A. Image estimation using fast modified reduced update Kalman filter [J]. IEEE Transactions on Signal Processing. 1992,40(4):915~926.
[45]  [20]Koch S, Kaufman H, Biemond J. Restoration of spatially varying blurred images using multiple model-based extended Kalman filters [J]. IEEE Transactions on Image Processing,1995,4(4) :520~523.
[46]  [22]Erler K, Jernigan E. Adaptive image restoration using recursive image filters [J]. IEEE Transactions on Signal Processing,1994,42(7):1877~1881.
[47]  [24]Kundur D, Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering [J]. IEEE Transactions on Signal Processing, 1998,46(2) :156~161.
[48]  [26]Eng H L, Ma K K. Noise adaptive soft-switching median filter [J]. IEEE Transactions on Image Processing, 2001, 10(2):242~251.
[49]  [29]GoKmen M, Li C. Edge detection using refined regularization [A]. In: Proc. 1991 IEEE Computer Society Conference of Computer Vision and Pattern Recognition [C], Maui, Hawai,USA, June 1991.
[50]  [31]Zervakis M E, Venetsanopoulos A N. Iterative least squares estimators in nonlinear image restoration [J]. IEEE Trans.Signal Processing, 1992,40 (4): 927~945.
[51]  [32]Hopfield J J. Tank D W. Neural computation of decisions in optimization problems[J]. Biol. Cybern. , 1985,52:141~152.
[52]  [33]Karayiannis N B,Venetsanopoulos A N. Regularization theory in image restoration The stabilizing functional approach[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1990,38(7):1155~1179.
[53]  [36]Kang M G, Katsaggelos A K. General choice of the regularization functional in regularized image restoration [J].IEEE Transactions on Image Process, 1995,4(5);594~603.
[54]  [38]Murat B, Misha E K, Eric L M. Wavelet domain image restoration with adaptive edge-preserving regularization [J].IEEE Transactions on Image Processing, 2000,9 (4) : 597~608.
[55]  [40]Kundur D, Hatzinakos. Blind image deconvolution revisited[J].IEEE Signal Processing Magazine, 1996,13 (November): 61~63.
[56]  [41]Chan T F, Wong C K. Total variation blind deconvolution[J].IEEE Transactions on Image Processing, 1998,7 (3) : 370~395.
[57]  [42]Goles-Chacc E, Fogelman-Soulie F, Pellegin D. Decreasing energy function as a tool for studying threshold networks [J].Discrete Application Mathmatic, 1985,12 : 261~277.
[58]  [45]Rosenblum M, Yacoob Y, Davis L S. Human expression recognition from motion using a radial basis function network architecture[J]. IEEE Transactions on Neural Networks, 1996,7(5) :1121~1138.
[59]  [46]Lee S, Pan J C. Unconstrained handwritten numeral recognition based on radial basis competitive and cooperative networks with spatio-temporal feature representation[J]. IEEE Transactions on Neural Networks, 1996,7(2):455~474.
[60]  [48]李翠华,郑南宁.构造径向基函数的一般方法及其在图象处理中的应用[J].数值计算与计算机应用,2000,(2):81~87.
[61]  [51]Sziranyi T, Zerubia J. Markov random field image segmentation using CNN [J]. IEEE Transactions on Circuits and Systems,1997,44(1) :86~89.
[62]  [54]赵建业,王新,余道衡.基于Gibbs图象模型的细胞神经网络模板设计法[J].电子学报,2000,28(1):48~52.
[63]  [56]Zhang Q H, Benveniste A. Wavelet networks [J]. IEEE Transactions on Neural Networks, 1992,3(6) :889~898.
[64]  [58]张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报,1995,18(6):88~95.
[65]  [60]丁宇新,沈雪勤.基于能量密度的小波神经网络[J].计算机学报,1997,20(9):832~838.
[66]  [61]黄凤岗,孙文彦,王莹.一种自适应的小波神经网络[J].电子学报,1998,26(8):143~145.
[67]  [63]陈,哲、冯天瑾.小波分析与神经网络结合的研究进展[J].电子科学学刊,2000,22(3):496~504.
[68]  [65]廖晓昕,王晓君,傅予力等.论细胞神经网络的理论基础[J].电子科学学刊,1998,20(5):694~698.
[69]  [68]Kosko B.Neural networks and fuzzy systems:a dynamic systems approachto machine intelligence[M].EngleWood Cliffs NJ.USA:Prentice-Hall Intelligence,Inc.1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133