全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于四点分段的一类三角多项式曲线

DOI: 10.11834/jig.2002010324

Keywords: 四点分段,三角多项式曲线,曲线设计,样条曲线,曲体设计,曲线生成方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一类m(m=1,2,3)次分段三角多项式曲线,通过引入形状参数,给出了加权三角多项式曲线,与三次B样条曲线类似。每段三角多项式曲线由4个相继的控制点生成,对于等距节点的情形,所提出的三角多项式曲线是C^2m-1连续;给出了三角开曲线和闭曲线的构造方法。论述了椭圆的表示方法,给出了三角多项式曲线与三次B样条曲线的对比,通过改变次数m或调整形状参数,可以得到不同程度地接近于控制多边形的曲线,因此,所给曲线的生成方法是一种结构简单和使用方便的曲线生成方法。

References

[1]  [1]Hoschek J, Lasser D. Fundamentals of computer aided geometric design[M]. Wellesley, MA: A. K. Peters, 1993.
[2]  [2]Barsky B A. Computer graphics and geometric modeling using Beta-spline[M]. Heidelberg: Springer-Verlag, 1988.
[3]  [3]Gregory J A, Sarfraz M. A rational cubic spline with tension [J]. Computer Aided Geometric Design, 1990,7 (9): 1~13.
[4]  [5]Boehm W. Rational geometric splines [J]. Computer Aided Geometric Design, 1990,7(4) :67~77.
[5]  [7]Joe B. Quartic beta-splines[J]. ACM Trans. Graph. , 1990,9:301~337.
[6]  [10]Walz G. Some identities for trigonometric B-splines with application to curve design[J]. BIT, 1997,37:189~201.
[7]  [4]Joe B. Multiple-knot and rational cubic Beta-spline[J]. ACM Trans. Graph. 1989,8:100~120.
[8]  [6]Goodman T N T. Constructing piecewise rational curves with Frenet frame continuity[J]. Computer Aided Geometric Design,1990,7(7) :15~31.
[9]  [8]Schoenberg I J. On trigonometric spline interpolation [J]. J.Math. Mech., 1964,13:795~825.
[10]  [9]Lyche T, Winther R. A stable recurrence relation for trigonometric B-splines[J]. J. Approx. Theory, 1979, 25:266~279.
[11]  [11]Han X L. The parametric cubic trigonometric spline curve with factors [A]. In:Proceedings of the 6th International Conference on Computer Aided Design and Computer Graphics [C].Shanghai: Wen Hui Publishers, 1999:1021~1024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133