全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于小波域隐马尔可夫树模型的超声图象贝叶斯去噪

DOI: 10.11834/jig.200306225

Keywords: 计算机图象处理(520.6040),隐马尔可夫树模型,散粒噪声,小波分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种新的医学超声图象去噪方法.首先,原始超声图象经对数变换,其乘性散粒噪声变为了加性噪声;然后再经小波变换后,基于隐马尔可夫树模型,应用贝叶斯方法去除加性噪声;最后,经小波反变换和指数变换恢复去噪后的原始超声图象.测试结果表明,此方法在有效去除噪声的同时,能保留原始图象的细节边缘.针对超声图象还对几种去噪算法作出定性比较,并对去噪性能给出定量分析,实验结果表明,该方法是可行的

References

[1]  [1]邓必鑫.信号分析基础[M].北京:北京理工大学出版社,1994:400~406.
[2]  [3]Zong Xuli, Laine A F, Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing[J]. IEEE Transactinos on Medical Imag,1998,17(4): 532~540.
[3]  [4]Xiang S H, Zhang Y T. Maximization of the signal-to-noise ratio for two dimensional medical ultrasound transducer sensitivity improvement by denoising wavelets [A]. In: Proceedings of International Conference Biomedical Engineering [C], Hong Kong, 1996:3~5.
[4]  [6]Zong X, Geiser E A, Laine A F et al. Homomorphic wavelet shrinkage and feature emphasis for speckle reduction and enhancement of echocardiographic images[A]. In: Proceedings of SPIE, Medical Imaging: Image Processing [C],. Newport Beach, USA 1996, 2710:658~667.
[5]  [7]Donoho L. Denoising by soft-thresholding [J]. IEEE Transactios on Information Theory 1995,41(3): 613~627.
[6]  [11]Goodman J W. Some fundamental properties of speckle[J]. J.Opt. Soc. Amer. 1976, 66(11): 1145~1150.
[7]  [14]Gagnon L, Jouan A. Speckle filtering of SAR images-A comparative study between complex-wavelet based and standard filters[A]. In: SPIE Proc[C]. Washington, USA 1997, 3169:80~91.
[8]  [15]Sattar F, Floreby L, Salomonsson G et al. Image enhancement based on a nonlinear multiscale method[J]. IEEE Transactions on Image Processing, 1997, 6(1) :888~895.
[9]  [2]Jain K. Fundamental of digital image processing [M ].Englewood Cliffs,NJ USA: Prentice-Hall, 1989.
[10]  [5]Hao Xiao-hui, Gao Shang-kai, Gao Xiao-rong. A novel multiscale nonlinear Thrtesholding method for ultrasonic speckle suppressing[J]. IEEE Transactions on Medical Imag, 1999, 18(9) :787~794.
[11]  [8]Donoho D L, Johnstone I. Adapting to unknown smoothness via wavelet shrinkage [J]. J. Amer. Statistical Assoc. 1995,90(432): 1200~ 1224.
[12]  [9]Crouse Matthew S. Nowak Robert D. Baraniuk Richard G.Wavelet-based statistical signal processing using hidden markov models [J]. IEEE Transactions on Signal Processing, 1998,46(4) :886~902.
[13]  [10]Romberg J K, Hyeokho Choi, Baraniuk R G. Bayesian treestructured image modeling using wavelet-domain hidden Markov models[J]. IEEE Transactions on Image Processing, 2001,10(7) :1056~1068.
[14]  [12]Asernaut H H, April G. Properties of speckle integrated with a finite aperture and logarithmically transform[J]. J. Opt. Soc.Am. , 1976,66(11):1160~1163.
[15]  [13]Coifman R R, Donoho D L. Translation-invariant de-noising[ A]. In: Wavelets and Statistics [A], Antoniadis A. and Oppenheim G. , Eds. Lecture Notes in Statistics, New York:Berlin, Germany: Springer-Verlag, 1995, 103:125~150.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133