全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带形状参数的Bézier曲线

DOI: 10.11834/jig.20060244

Keywords: Bézier曲线,形状参数,曲线设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

给出了含有参数λ的(n+1)次多项式基函数,其是n次Bernstein基函数的扩展;分析了这组基的性质,基于该组基定义了带有形状参数的(n+1)次多项式曲线。曲线不仅具有n次Bézier曲线的特性:如端点插值、端边相切、凸包性、变差缩减性、保凸性等,而且具有形状的可调性:在控制顶点不变的情况下,随着参数不同,可产生不同逼近控制多边形的曲线。当λ=0时,曲线可退化为n次Bézier曲线。运用张量积方法,可生成形状可调的曲面,曲面具有曲线类似的性质。应用实例表明,本文定义的曲线应用于曲线/曲面的设计十分有效。

References

[1]  Pottmann H,Wagner M G.Helix splines as an example of affine tchebycheffian splines[J].Advances Computation Mathematics,1994,45(2):123 ~ 142.
[2]  Piegl L,Tiller M.The NURBS Book (2nd ed)[M].Berlin:Springer,1997:141 ~ 188.
[3]  Qi Cong-qian,Wu Hong-yi.A class of modifiable Bézier curves and its approximation[J].Journal of Hunan University,1996,23 (6):15-19.[齐从谦,邬弘毅.-类可调控Bézier曲线及其逼近性[J].湖南大学学报,1996,23(6):15-19.]
[4]  Liang Xi-kun.Bernstein-Bézier class curves and a reparametrization method of Bézier[J].Journal of Computer Research and Development,2004,41 (6):1016 ~ 1021.[梁锡坤.BernsteinBézier类曲线和Bézier曲线重新参数化方法[J].计算机研究与发展,2004,41(6):1016~1021.]
[5]  Zhang Ji-wen.C-curves:An extension of cubic curves[J].Computer Aided Geometric Design,1996,13 (2):199 ~ 217.
[6]  Ron Goldman.Pyramid Algorithms:A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling[M].Beijing:Publishing House of Electronics Industry,2004:152 ~ 157.[Ron Goldman著.金字塔算法--曲线曲面几何模型的动态编程处理[M].吴宗敏,刘剑平,曹沅等译.北京:电子工业出版社,2004:152~157.]
[7]  Fontanella F.Shape preserving interpolation[A].In:Computation of Curves and Surfaces[C],Tenerife,Spain:Kluwer Academic Publishers,1989:183 ~ 214.
[8]  Shi Fa-zhong.Computer Aided Geometric Design & Non-Uniform Rational B-Spline[M].Beijing:High Education Press,2001:306~454.[施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001:306~454.]
[9]  Marnar E,Pens J M,Sanchez-Renes J.Shape preserving alternatives to the rational Bézier model[J].Computer Aided Geometric Design,2001,18(1):37 ~ 60.
[10]  Liu Gen-hong,Liu Shong-tao.Application of generalized Bézier curve and surface in smooth joining[J].Acta Mathematicae Applicatae Sinica,1996,19(1):107~114.[刘根洪,刘松涛.广义Bézier曲线与曲面在连接中的应用[J].应用数学学报,1996,19(1):107~114.]
[11]  Han Xu-li,Liu Sheng-jun.Extension of a quadratic Bézier curve[J].Journal of Central South University Technology,2003,34(2):214~217.[韩旭里,刘圣军.二次Bézier曲线的扩展[J].中南工业大学学报(自然科学版),2003,34(2):214~217.]
[12]  Chen Qin-yu,Yang Xun-nian,Wang Guo-zhao.Properties and applications of degree 4 C-curve[J].Application Math Journal Chinese University(Series A.),2003,18 (1):45 ~ 50.[陈秦玉,杨勋年,汪国昭.四次C-曲线的性质及其应用[J].高校应用数学学报A辑,2003,18(1):45~50.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133