Li Shijin,Tao Jian,Wan Dingsheng,et al.Content-based remote sensing image retrieval using co-training of multiple classifiers [J].Journal of Remote Sensing,2010,14(3): 500- 506.[李士进,陶剑,万定生,等.多分类器实例协同训练遥感图像检索[J].遥感学报,2010,14(3):500-506.]
[2]
Ye Bo,Wen Yumei,He Weihua.Gait recognition based on the fusion of multiple classifiers [J].Journal of Image and Graphics,2009,14(8): 1627-1637.[叶波,文玉梅,何卫华.多分类器信息融合的步态识别算法[J].中国图象图形学报,2009,14(8):1627-1637.]
[3]
Nicolas G P,Domingo O B.Boosting random subspace method [J].Neural Networks,2008,21(9): 1344-1362.
[4]
Ioannis P,Grigorios T,Ioannis V.Pruning an ensemble of classifiers via reinforcement learning [J].Neurocomputing,2009,72(7-9): 1900-1909.
[5]
Akhand M A H,Islam M M,Murase K.Progressive interactive training: a sequential neural network ensemble learning method [J].Neurocomputing,2009,73(1-3): 260-273.
[6]
Koen W D B,Kristof C,Dirk V P.Ensemble classification based on generalized additive models [J].Computational Statistics & Data Analysis.2010,54(6): 1535-1546.
[7]
Wang Yuanyuan,Li Jing.Analysis of feature selection and its impact on hyper-spectral data classification based on decision tree algorithm [J].Journal of Remote Sensing,2007,11(1):69-76.[王圆圆,李京.基于决策树的高光谱数据特征选择及其对分类结果的影响分析[J].遥感学报,2007,11(1):69-76.]
[8]
Juan J R,Kuncheva L I,Carlos J A.Rotation forest: a new classifier ensemble method [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(10):1619-1630.
[9]
Liu Kunhong,Huang Deshuang.Cancer classi fication using rotation forest [J].Computers in Biology and Medicine,2008,38(5): 601-610.
[10]
Zhang Chunxia,Zhang Jiangshe.RotBoost: a technique for combining rotation forest and AdaBoost [J].Pattern Recognition Letters,2008,29(10): 1524-1536.
[11]
Leo B.Random forests [J].Machine Learning,2001,45(1): 5-32.
[12]
Blake C L,Merz C J.1998.UCI Repository of Machine Learning Databases.[DB/OL] (2010-03-01) [2010-03-12] http://www.ics.uci.Edu/~mlearn/MLR―epository.html.