全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人体运动分析的实例学习方法

DOI: 10.11834/jig.20150708

Keywords: 运动分析,实例学习,形状上下文,统计建模

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的面向实时、准确、鲁棒的人体运动分析应用需求,从运动分析的特征提取和运动建模问题出发,本文人体运动分析的实例学习方法。方法在构建人体姿态实例库基础上,首先,采用运动检测方法得到视频每帧的人体轮廓;其次,基于形状上下文轮廓匹配方法,从实例库中检索得到每帧视频的候选姿态集;最后,通过统计建模和转移概率建模实现人体运动分析。结果对步行、跑步、跳跃等测试视频进行实验,基于轮廓的形状上下文特征表示和匹配方法具有良好的表达能力;本文方法运动分析结果,关节夹角平均误差在5°左右,与其他算法相比,有效提高了运动分析的精度。结论本文人体运动分析的实例学习方法,能有效分析单目视频中的人体运动,并克服了映射的深度歧义,对运动的视角变化鲁棒,具有良好的计算效率和精度。

References

[1]  Moeslund T B, Hilton A, Kruger V. A survey of advances in vision-based human motion capture and analysis [J]. Computer Vision and Image Understanding, 2006, 104(2): 90-126.
[2]  Poppe R. Vision-based human motion analysis: an overview [J]. Computer Vision and Image Understanding, 2007, 108(1): 4-18.
[3]  Howe N R. Silhouette lookup for monocular 3D pose tracking [J]. Image and Vision Computing, 2007, 25(3): 331-341.
[4]  Andreas M L, Peter V G, Sebastian N. Efficient nonlinear markov models for human motion [C]//Proceedings of the IEEE International Conference on Computer vision and Pattern Recognition. Columbus, Ohio: IEEE Press: 2014, 220-228.
[5]  Andreas M L, Peter V G, Sebastian N. A non-parametric bayesian network prior of human pose [C]//Proceedings of the IEEE International Conference on Computer Vision. Sydney, Australia: IEEE Press, 2013: 1281-1288.
[6]  Mori G, Malik J. Recovering 3D human body configurations using shape contexts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7): 1052-1062.
[7]  Li Y, Sun Z X, Yuan B, et al. An improved method for motion detection by frame difference and background subtraction [J]. Journal of Image and Graphics, 2009, 14(6): 1162-1168. [李毅,孙正兴,远博,等. 一种改进的帧差和背景减相结合的运动检测方法[J]. 中国图象图形学报, 2009, 14(6), 1162-1168.][DOI:10.11834/jig.20090624]
[8]  Ormoneit D, Sidenbladh H, Michael J, et al. Learning and tracking cyclic human motion [C]//Proceedings of Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2001: 894-900.
[9]  Shakhnarovich G, Viola P, Darrell T. Fast pose estimation with parameter-sensitive hashing [C]//Proceedings of the IEEE International Conference on Computer Vision. Nice, France: IEEE Press, 2003: 750-759.
[10]  Li Y, Sun Z X. Generative tracking of 3D human motion in latent space by sequential clonal selection algorithm [J]. Multimedia Tools and Applications, 2014, 69(1): 79-109.
[11]  Zhao X, Fu Y, Ning H Z, et al. Human pose regression through multi-view visual fusion [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(7): 957-966.
[12]  Sapp B,Toshev A,Taskar B. Cascaded models for articulated pose estimation [C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece: IEEE Press, 2010: 406-420.
[13]  Ukita N. Articulated pose estimation with parts connectivity using discriminative local oriented contours [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE Press, 2012: 3154-3161.
[14]  Poppe R, Poel M. Comparison of silhouette shape descriptors for example-based human pose recovery [C]//Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition. Southampton, United Kingdom: IEEE Press, 2006: 541-546.
[15]  Wang R R, Qiu X J, Wang W Z, et al. A video-driven approach to 3D human animation synthesis [J]. Journal of System Simulation, 2007, 19(8): 1700-1704. [王??,邱显杰,王文中,等. 一种视频驱动的三维人体动画合成方法[J]. 系统仿真学报,2007, 19(8): 1700-1704.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133