全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
催化学报  2014 

C2H4在Fe3C(100)表面吸附及脱氢裂解的密度泛函理论研究

DOI: 10.1016/S1872-2067(12)60703-7, PP. 28-37

Keywords: 乙烯,碳化铁,吸附,脱氢,裂解,费托合成,密度泛函理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用自旋极化密度泛函理论和周期平板模型,对C2H4在铁基费托合成催化剂活性相之一Fe3C(100)表面从热力学和动力学两个方面分析了C2H4在Fe3C(100)表面进行脱氢和裂解反应的竞争性。结果表明,C2H4在Fe3C(100)表面的μ-bridging吸附比π、di-σ吸附更加稳定;C2H4与Fe3C(100)面的相互作用导致C2H4的C原子部分发生重新杂化(sp2→sp3),使C原子呈近四面体结构。在Fe3C(100)表面C2H4易于发生脱氢反应,C-C键裂解反应不具有竞争性。亚乙烯基CCH2和乙烯基CHCH2是Fe3C(100)表面最丰的C2物种,或是C2H4参与链增长的主要单体形式。

References

[1]  Biloen P, Sachtler W M H. Adv Catal, 1981, 30: 165
[2]  Wang Y, Kang J C, Zhang Q H. Petrochem Technol (王野, 康金灿, 张庆红. 石油化工), 2009, 38: 1255
[3]  Li S, O’Brien R J, Meitzner G D, Hamdeh H, Davis B H, Iglesia E. Appl Catal A, 2001, 219: 215
[4]  de Smit E, Beale A M, Nikitenko S, Weckhuysen B M. J Catal, 2009, 262: 244
[5]  Emmett P H. Crystallite Phase and Their Relationship to Fischer-Tropsch Catalysis. New York: Reinhold, 1956. 407
[6]  Herranz T, Rojas S, Pérez-Alonso F J, Ojeda M, Terreros P, Fierro J L G. J Catal, 2006, 243: 199
[7]  Mirzaei A A, Habipour R, Faizi M, Kashi E. Appl Catal A, 2006, 301: 272
[8]  de Smit E, Cinquini F, Beale A M, Safonova O V, van Beek W, Sautet P, Weckhuysen B M. J Am Chem Soc, 2010, 132: 14928
[9]  Pichler H, Schulz H. Chem Ing Tech, 1970, 42: 1162
[10]  Cao D B, Li Y W, Wang J G, Jiao H J. J Mol Catal A, 2011, 346: 55
[11]  Turner M L, Byers P K, Long H C, Maitlis P M. J Am Chem Soc, 1993, 115: 4417
[12]  Turner M L, Long H C, Shenton A, Byers P K, Maitlis P M. Chem Eur J, 1995, 1: 549
[13]  Jordan D S, Bell A T. J Phys Chem, 1986, 90: 4797
[14]  Mims C A, McCandlish L E, Melchior M T. Catal Lett, 1988, 1: 121
[15]  Kresse G, Hafner J. Phys Rev B, 1993, 48: 13115
[16]  Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15
[17]  J?nsson H, Mills G, Jacobsen K W. Classical and Quantum Dynamics in Condensed Phase Simulations. Singapore: World Scientific, 1998. 385
[18]  Loffreda D, Delbecq F, Simon D, Sautet P. J Phys Chem B, 2001, 105: 3027
[19]  Pallassana V, Neurock M, Lusvardi V S, Lerou J J, Kragten D D, van Santen R A. J Phys Chem B, 2002, 106: 1656
[20]  Xing B, Wei Z Z, Wang G C. J Energy Chem, 2013, 22: 671
[21]  Davis B H. Catal Today, 2009, 141: 25
[22]  Schulz H. Appl Catal A, 1999, 186: 3
[23]  Fischer F, Tropsch H. Ber Deutsch Chem Ges, 1926, 59: 830
[24]  Scorch H H, Goulombic N, Anderson R B. The Fischer-Tropsch and Related Syntheses. New York: Wiley, 1951
[25]  Kummer J T, Emmett P H. J Am Chem Soc, 1953, 75: 5177
[26]  Ciobica I M, Frechard F, van Santen R A, Kleyn A W, Hafner J. Chem Phys Lett, 1999, 311: 185
[27]  Huo C F, Li Y W, Wang J G, Jiao H J. J Am Chem Soc, 2009, 131: 14713
[28]  Ciobica I M, Kramer G J, Ge Q, Neurock M, van Santen R A. J Catal, 2002, 212: 136
[29]  Wu M C, Goodman D W. J Am Chem Soc, 1994, 116: 1364
[30]  Wu M C, Goodman D W. Surf Sci, 1994, 306: L529
[31]  Liu Z P, Hu P. J Am Chem Soc, 2002, 124: 11568
[32]  Chen J, Liu Z P. J Am Chem Soc, 2008, 130: 7929
[33]  Deng L J, Huo C F, Liu X W, Zhao X H, Li Y W, Wang J G, Jiao H J. J Phys Chem C, 2010, 114: 21585
[34]  Krishna K R, Bell A T. Catal Lett, 1992, 14: 305
[35]  Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169
[36]  Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865
[37]  Bl?chl P E. Phys Rev B, 1994, 50: 17953
[38]  van Santen R A, Neurock M, Shetty S G. Chem Rev, 2010, 110: 2005
[39]  Jacobsen C J H, Dahl S, Clausen B S, Bahn S, Logadottir A, N?rskov J K. J Am Chem Soc, 2001, 123: 8404

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133