全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

近10年新疆草地生态系统净初级生产力及其时空格局变化研究

DOI: 10.11686/cyxb20140305, PP. 39-50

Keywords: 新疆草地,净初级生产力,时空动态格局,CASA模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于2001-2010年遥感监测和气象数据,采用CASA(Carnegie-Ames-StanfordApproach)模型模拟分析新疆地区草地植被净初级生产力(NPP)及其时空变化特征。结果表明,新疆草地植被NPP空间分布特征受区域水热条件的制约,草地植被大体上由北向南依次出现高山与亚高山草甸、平原草地、草甸、荒漠草地和高山与亚高山草地,其NPP也逐渐由395gC/(m2·a)减少到接近0gC/(m2·a)。10年间,新疆草地NPP总量平均值为56.47TgC。新疆不同草地类型的NPP存在较大差异。其中,草甸的平均NPP最高,为155.29gC/(m2·a);荒漠草地的平均NPP最低,为57.68gC/(m2·a);总体表现为草甸>高山与亚高山草甸>平原草地>高山与亚高山草地>荒漠草地;新疆地区草地植被NPP整体水平较低,其中,高山与亚高山草甸、平原草地和草甸属于较低生产力的生态系统;而荒漠草地和高山与亚高山草地则属于最低生产力的生态系统。新疆主要草地植被6-8月NPP占全年NPP的63.17%。不同草地类型的平均NPP月际变化差异较大,均在7月达峰值。前7个月平均增长速度最快的是高山与亚高山草甸,最慢的是高山与亚高山草地;后5个月平均下降速度最快的是草甸,最慢的是荒漠草地。除草甸呈增长趋势外,其他4种草地类型的平均NPP总体上表现出一定的下降趋势,其中,平原草地的平均NPP下降速率最快。全区草地植被NPP总量在2007年达最高值,为60.21TgC/a,最低值出现在2006年,为53.41TgC/a。草甸是新疆5种草地类型中NPP总量唯一呈逐渐增长的草地类型,而其他4种草地类型均呈下降趋势,其中平原草地的NPP总量下降速率最快。近10年来,新疆全区草地植被总NPP的年际变化较大,有进一步下降趋势。

References

[1]  Reference:
[2]  Ruimy A, Saugier B. Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research, 1994, 99: 5263-5283.
[3]  Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 28l: 237-240.
[4]  Fang J Y, Piao S L, Field C B, et al. Increasing net primary production in China from 1982 to 1999[J]. Frontiers in Ecology and the Environment, 2003, 1: 293-297.
[5]  Piao S L, Fang J Y, Zhou L M, et al. Changes in vegetation net primary productivity from 1982 to 1999 in China[J]. Global Biogeochemical Cycles, 2005, 19, GB2027, doi: 10.1029/2004GB002274.
[6]  Gao Q Z, Wan Y F, Li Y E, et al. Trends of grassland NPP and its response to human activity in Northern Tibet[J]. Acta Ecologica Sinica, 2007, 27(11): 4612-4619.
[7]  Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface dara[J]. Global Biogeochemical Cycle, 1993, 7: 811-841.
[8]  〖JP2〗Gower S T, Krankina O, Olson R J, et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11(5): 1395-1411.〖JP〗
[9]  Lobell D B, Hicke J A, Asner G P, et al. Satellite estimates of productivity and light use efficiency in the United States agriculture, 1982-1998[J]. Global Change Biology, 2002, 8: 722-735.
[10]  Zhu W Q, Pan Y Z, Liu X, et al. Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change[J]. Journal of Forestry Research, 2006, 17(2): 93-98.
[11]  Zhou W, Wang Q, Zhang C W, et al. Spatiotemporal variation of grassland vegetation NDVI in the middle and upper reaches of the Hei River and its response to climatic factors[J]. Acta Prataculturae Sinica, 2013, 22(1): 138-147.
[12]  Mu S J, Li J L, Yang H F, et al. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia[J]. Acta Prataculturae Sinica, 2013, 22(3): 6-15.
[13]  Song C Q, You S C, Liu G H, et al. Spatio-temporal pattern and change of Nagqu grassland and the influence of human factors[J]. Acta Prataculturae Sinica, 2012, 21(3): 1-10.
[14]  Fan Y J, Hou X Y, Shi H X, et al. Effect of carbon cycling in grassland ecosystems on climate warming[J]. Acta Prataculturae Sinica, 2012, 21(3): 294-302.
[15]  Dong Z X, Liu X P. Status and cause analysis of grassland degradation in Xinjiang[J]. Journal of Hebei Agricultural Sciences, 2009, 13(4): 89-92, 96.
[16]  Zhu W Q, Pan Y Z, He H, et al. Largest light utilization simulatation of typical vegetation in China[J]. Chinese Science Bulletin, 2006, 51(6): 700-706.
[17]  Zhu W Q, Pan Y Z, Long Z H, et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: a case study in Inner Mongolia, China[J]. Journal of Remote Sensing, 2005, 9(3): 300-307.
[18]  Ju Q, Nuerbayi A B D S L K, Pan X L. Degeneration and strategies for management of grassland of Xinjiang[J]. Environmental Protection of Xinjiang, 2004, 26(3): 43-46.
[19]  Scurlock J M O, Cramer W, Olson R J, et al. Terrestrial NPP: towards a consistent data set for global model evaluation[J]. Ecological Applications, 1999, 9: 913-919.
[20]  参考文献:
[21]  Ruimy A, Saugier B. Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research, 1994, 99: 5263-5283.
[22]  Field C B, Behrenfeld M J, Randerson J T,et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science, 1998, 28l: 237-240.
[23]  Fang J Y, Piao S L, Field C B,et al. Increasing net primary production in China from 1982 to 1999[J]. Frontiers in Ecology and the Environment, 2003, 1: 293-297.
[24]  Piao S L, Fang J Y, Zhou L M,et al. Changes in vegetation net primary productivity from 1982 to 1999 in China[J]. Global Biogeochemical Cycles, 2005, 19, GB2027, doi: 10.1029/2004GB002274.
[25]  高清竹, 万运帆, 李玉娥, 等. 藏北高寒草地NPP变化趋势及其对人类活动的响应[J]. 生态学报, 2007, 27(11): 4612-4619.
[26]  Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: a process model based on global satellite and surface dara[J]. Global Biogeochemical Cycle, 1993, 7: 811-841.
[27]  〖JP2〗Gower S T, Krankina O, Olson R J,et al. Net primary production and carbon allocation patterns of boreal forest ecosystems[J]. Ecological Applications, 2001, 11(5): 1395-1411.〖JP〗
[28]  Lobell D B, Hicke J A, Asner G P,et al. Satellite estimates of productivity and light use efficiency in the United States agriculture, 1982-1998[J]. Global Change Biology, 2002, 8: 722-735.
[29]  Zhu W Q, Pan Y Z, Liu X,et al. Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change[J]. Journal of Forestry Research, 2006, 17(2): 93-98.
[30]  周伟, 王倩, 章超斌, 等. 黑河中上游草地NDVI时空变化规律及其对气候因子的响应分析[J]. 草业学报, 2013, 22(1): 138-147. 浏览
[31]  穆少杰, 李建龙, 杨红飞, 等. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系[J]. 草业学报, 2013, 22(3): 6-15. 浏览
[32]  宋春桥, 游松财, 刘高焕, 等.那曲地区草地植被时空格局与变化及其人文因素影响研究[J]. 草业学报, 2012, 21(3): 1-10. 浏览
[33]  范月君, 侯向阳, 石红霄, 等.气候变暖对草地生态系统碳循环的影响[J]. 草业学报, 2012, 21(3): 294-302. 浏览
[34]  董智新,刘新平. 新疆草地退化现状及其原因分析[J]. 河北农业科学, 2009, 13(4): 89-92, 96.
[35]  朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, 51(6): 700-706.
[36]  朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 9(3): 300-307.
[37]  鞠强, 努尔巴衣·阿不都沙勒克, 潘晓玲. 新疆草地退化及其治理[J]. 新疆环境保护, 2004, 26(3): 43-46.
[38]  Scurlock J M O, Cramer W, Olson R J,et al. Terrestrial NPP: towards a consistent data set for global model evaluation[J]. Ecological Applications, 1999, 9: 913-919.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133