全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2014 

湖南崀山森林公园不同植被条件下土壤微生物量及酶活性研究

DOI: 10.11686/cyxb20140117, PP. 142-148

Keywords: 植物群落,不同恢复阶段,微生物量,土壤酶活性

Full-Text   Cite this paper   Add to My Lib

Abstract:

以崀山森林公园植物群落的灌木阶段(A)、乔灌阶段(B)和乔木阶段(C)的土壤为研究对象,分别研究了3个阶段0~20cm,20~40cm土层土壤中微生物量及土壤酶活性。结果表明,随着土层深度的增加,土壤有机质、全氮、全磷含量呈降低的变化趋势,崀山森林公园植物群落不同恢复阶段土壤微生物量碳、微生物量氮、微生物量磷含量,以及微生物量碳、氮、磷对土壤有机质、全氮、全磷的贡献率均表现为0~20cm大于20~40cm。0~20cm土层中微生物量碳、微生物量磷以乔木阶段最高,微生物量磷在0~20cm、20~40cm均表现为C>A>B。微生物量氮以乔灌阶段最低。土壤微生物量碳、氮、磷对土壤有机质、氮、磷的贡献率均表现为0~20cm高于20~40cm。就崀山森林公园植物群落A、B、C三个阶段的土壤酶活性而言,0~20cm土层中蔗糖酶、脲酶、磷酸酶、蛋白酶、过氧化氢酶活性显著高于20~40cm(P<0.05),蔗糖酶高出20~40cm15.14%~35.69%。0~20cm土层的脲酶活性表现为C>B>A,且差异显著(P<0.05),蛋白酶活性以灌木阶段最高,分别是乔灌、乔木阶段的1.244,1.442倍和1.680,1.713倍;中性磷酸酶以乔灌阶段的活性最高,碱性磷酸酶则以灌木阶段的最高。3个不同恢复阶段0~20cm土层的过氧化氢酶活性无显著性差异(P>0.05)。

References

[1]  Reference:
[2]  Liu M Q, Hu F, He Y Q, et al. Seasonal dynamics of soil microbial biomass and its significance to indicate soil quality under different vegetations restored on degaded red soils[J]. Acta Pedologica Sinica, 2003, 40(6): 937-944.
[3]  Wei Y W, Su Y R, Chen X B, et al. Effects of human disturbance on profile distribution of soil organic C,total N,total P and microbial biomass in Karst Region of Northwest Guangxi[J]. Journal of Soil and Water Conservation, 2010, 24(3): 164-169.
[4]  Yi H Y, Gong Y B, Wu W H, et al. Study on soil microorganism and soil enzyme activity of different vegetation in the mountain Forests-the Arid Valley ecotone in the upper reach of Minjiang River[J]. Journal of Soil and Water Conservation, 2010, 24(3): 145-149.
[5]  Yang C D, Long R J, Chen X R, et al. Seasonal dynamics in soil microbial biomass and enzymatic activities under different alpine brushlands of the Eastern Qilian Mountains[J]. Acta Prataculturae Sinica, 2011, 20(6): 135-142.
[6]  Yu F M, Liu H, Liu K H, et al. Changes of soil enzyme activities in the early period restoration of subalpine coniferous forests in western Sichuan, China[J]. Ecology and Environment Sciences, 2012, 21(1): 64-68.
[7]  Li W, Yu L J, Li T, et al. Seasonal and spatial dynamics of soil enzyme activities and its relationship to soil fertility in Karst ecosystem——a case study of Guilin Yaji Karst experimental site[J]. Journal of Agro-Environment Science, 2008, 27(1): 260-266.
[8]  Fu Y H, Huang Z S, Yu L F. Soil enzyme activities in the type of root underground habitat typical of Karst areas[J]. Acta Pedologica Sinica, 2012, 49(6): 1202-1209.
[9]  Chen Y D, Jiang Y P, Zhu Y H. Differences of natural characteristics between two typical karst ecosystems in Lijiang River Basin[J]. Journal of Natural Resources, 2003,18(2): 326-332.
[10]  Li X K, He C X, Tang J S, et al. Evolution and ecological processes of Karst ecosystem of Guangxi[J]. Guangxi Sciences, 2008, 15(1): 80-86, 91.
[11]  Chen S Y, Liu W J, Ye B S, et al. Species diversity of vegetation in relation to biomass and environmental factors in the upper area of the Shule River[J]. Acta Prataculturae Sinica, 2011, 20(3): 70-83.
[12]  Ma J M, Wu M, Zhan T T, et al. Changes of species composition and diversity among restoration stages of Loropetalum chinense communities in karst area of Lijiang River valley[J]. Ecology and Environment Sciences, 2013, 22(1): 66-71.
[13]  Yang Y, Luo Y. Carbon:nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20: 354-361.
[14]  Bao S D. Agrochemical soil analysis[M]. Beijing: China Agriculture Press, 1999: 103-105.
[15]  Wang H, Wang G, Huang Y Y, et al. The effects of pH change on the activities of enzymes in an acid soil[J]. Ecology and Environment, 2008, 17(6): 2401-2406.
[16]  Luo M, Wen Q K, Ji C Y, et al. Influence of different fertilization measures on microbial biomass and activities in cotton soil[J]. Soils, 2002, 1: 53-55.
[17]  Gu L J, Xu B L, Liang Q L, et al. Impact and colonisation ability of Trichoderma biocontrol on lawn soil microflora[J]. Acta Prataculturae Sinica, 2013, 22(3): 321-326.
[18]  Chen X Y, Lv J L, Zhang H, et al. Studies on soil micro biomass and organic acid under different vegetations[J]. Agricultural Research In The Arid Areas, 2008, 26(3): 167-170.
[19]  You M Y, Han X Z, Liang Y. The dynamics of microbial biomass carbon under different vegetations cover[J]. Chinese Journal of Soil Science, 2012, 43(6): 1401-1404.
[20]  Xie S, Liu G B, Dai Q H, et al. Evolution of soil microbial biomass in the restoration process of artificial Robinia pseudoacacia under erosion environment[J]. Acta Ecologica Sinica, 2007, 27(3): 909-917.
[21]  An S S, Huang Y M, Liu M Y, et al. The responses and evaluation of soil enzymatic activities to plant rehabilitation in Ningxia Loess Hilly-gully region[J]. Research of Soil and Water Conservation, 2005, 12(3): 31-34.
[22]  Wang W, Jiang W L, Xie Z K, et al. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on Loess Plateau[J]. Acta Prataculturae Sinica, 2013, 22(1): 20-28.
[23]  Teng Z Q, Li X D, Han H G, et al. Effects of land use patterns on soil phosphorus fractions in the Longzhong part of the Loess Plateau[J]. Acta Prataculturae Sinica, 2013, 22(2): 30-37.
[24]  参考文献:
[25]  刘满强, 胡锋, 何园球, 等. 退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义[J]. 土壤学报, 2003, 40(6): 937-944.
[26]  魏亚伟, 苏以荣, 陈香碧, 等. 人为干扰对桂西北喀斯特生态系统土壤有机碳、氮、磷和微生物量剖面分布的影响[J]. 水土保持学报, 2010, 24(3): 164-169.
[27]  易海燕, 宫渊波, 伍维翰, 等. 岷江上游山地森林/干旱河谷交错带植被恢复对土壤微生物量及酶活性的影响[J]. 水土保持学报, 2010, 24(3): 145-149.
[28]  杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征[J]. 草业学报, 2011, 20(6): 135-142. 浏览
[29]  于方明, 刘华, 刘可慧, 等. 川西亚高山暗针叶林恢复初期土壤酶活性研究[J]. 生态环境学报, 2012, 21(1): 64-68.
[30]  李为, 余龙江, 李涛, 等. 岩溶生态系统土壤酶活性的时空动态及其与土壤肥力的关系[J]. 农业环境科学学报, 2008, 27(1): 260-266.
[31]  符裕红, 黄宗胜, 喻理飞. 岩溶区典型根系地下生境类型中土壤酶活性研究[J]. 土壤学报, 2012, 49(6): 1202-1209.
[32]  陈余道, 蒋亚萍, 朱银红. 漓江流域典型岩溶生态系统的自然特征差异[J]. 自然资源学报, 2003,18(2): 326-332.
[33]  李先琨, 何成新, 唐建生, 等. 广西岩溶山地生态系统特征与恢复重建[J]. 广西科学, 2008, 15(1): 80-86, 91.
[34]  陈生云, 刘文杰, 叶柏生, 等.疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系[J]. 草业学报, 2011, 20(3): 70-83.
[35]  马姜明, 吴蒙, 占婷婷, 等. 漓江流域岩溶区檵木群落不同恢复阶段物种组成及多样性变化[J]. 生态环境学报, 2013, 22(1): 66-71.
[36]  Yang Y, Luo Y. Carbon:nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20: 354-361.
[37]  鲍士旦. 土壤农化分析手册[M]. 北京: 中国农业出版社(第三版), 1999: 103-105.
[38]  汪涵, 王果, 黄颖颖, 等. pH变化对酸性土壤酶活性的影响[J]. 生态环境, 2008, 17(6): 2401-2406.
[39]  罗明, 文启凯, 纪春燕, 等. 不同施肥措施对棉田土壤微生物量及其活性的影响[J]. 土壤, 2002, 1: 53-55.
[40]  古丽君, 徐秉良, 梁巧兰, 等. 生防木霉对草坪土壤微生物区系的影响及定殖能力研究[J]. 草业学报, 2013, 22(3): 321-326. 浏览
[41]  陈小燕, 吕家珑, 张红, 等. 子午岭不同植被类型土壤微生物量与有机酸含量[J]. 干旱地区农业研究, 2008, 26(3): 167-170.
[42]  尤孟阳, 韩晓增, 梁尧. 不同植被覆盖下土壤微生物量碳动态变化[J]. 土壤通报, 2012, 43(6): 1401-1404.
[43]  薛萐, 刘国彬, 戴全厚, 等. 侵蚀环境生态恢复过程中人工刺槐林(Robinia pseudoacacia)土壤微生物量演变特征[J]. 生态学报, 2007, 27(3): 909-917.
[44]  安韶山, 黄懿梅, 刘梦云, 等.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J]. 水土保持研究, 2005, 12(3): 31-34.
[45]  王文, 蒋文兰, 谢忠奎, 等. 黄土丘陵地区唐古特白刺根际土壤水分与根系分布研究[J]. 草业学报, 2013, 22(1): 20-28. 浏览
[46]  滕泽琴, 李旭东, 韩会阁, 等.土地利用方式对陇中黄土高原土壤磷组分的影响[J]. 草业学报, 2013, 22(2): 30-37. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133