全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于投影和密度的高维数据流聚类算法

DOI: 10.3969/j.issn.1674-0696.2013.04.41, PP. 725-728

Keywords: 数据流,聚类算法,投影,降维,密度,异常检测,datastream,clusteringalgorithm,projection,dimensionreduction,density,anomalydetection

Full-Text   Cite this paper   Add to My Lib

Abstract:

:?在经典数据流的聚类算法基础之上,提出了一种基于投影和密度的高维数据流聚类算法———HpDenStream,该算法结合滑动窗口技术,采用投影算法对高维数据流进行降维处理,并运用密度聚类算法对降维后的数据进行异常数据检测。仿真实验结果表明:该方法占用的存储空间小,算法的工作量少,并提高了算法的执行效率。

References

[1]  Chen Ming,Ji Genlin. A subspace clustering algorithm for high dimensional data based on similar dimension [J]. Journal of NanjingNormal University: Natural Science,2010,33( 4) : 119-122.
[2]  任家东,周玮玮,何海涛. 高维数据流的自适应子空间聚类算法[J]. 计算机科学与探索, 2010,4( 9) : 859-964.
[3]  Ren Jiadong,Zhou Weiwei,He Haitao. Adaptive clustering algorithm for mining subspace clusters in high-dimensional data stream[J]. Journal of Frontiers of Computer Science and Technology,2010,4( 9) : 859-964.
[4]  颜晓龙,沈鸿. 一种适用于高维数据流的子空间聚类方法[J].计算机应用, 2007, 27( 7) : 1680-1684. Yan Xiaolong,Shen Hong. Subspace clustering method for high dimensional data streams [J]. Computer Applications,2007,27( 7) : 1680-1684.
[5]  周晓云,孙志挥,张柏礼,等. 高维数据流子空间聚类发现及维护算法[J]. 计算机研究与发展, 2006,43( 5) : 834-840.
[6]  Zhou Xiaoyun,Sun Zhihui,Zhang Baili,et al. An efficient discovering and maintenance algorithm of subspace clustering over high dimensional data streams[J]. Journal of Computer Research and Development,2006,43( 5) : 834-840.
[7]  李子杰,郑成. 流数据和传统数据存储及管理方法比较研究[J]. 计算机技术与发展,2009,19( 4) : 101-104.
[8]  Li Zijie,Zheng Cheng. Comparative study on methods of storage and management of stream and traditional data [J]. Computer Technology and Development,2009,19( 4) : 101-104.
[9]  王家伟,汪仁红,罗宪,等. 基于数据流的桥梁健康监测海量数据处理[J]. 计算机系统应用,2011,20( 12) : 158-161.
[10]  Wang Jiawei,Wang Renhong,Luo Xian,et al. Processing of massive data based on data stream and bridge health monitoring[J]. Computer System & Application,2011,20( 12) : 158-161.
[11]  汪成亮,陆志坚,庞栩. 一种数据流趋势分析方法的研究与应用[J]. 计算机系统应用,2010, 19( 1) : 152-155.
[12]  Wang Chengliang,Lu Zhijian,Pang Xu. Research and application of an algorithm for trend analysis of data streams [J]. Computer System & Application,2010,19( 1) : 152-155.
[13]  黄树成,曲亚辉. 数据流分类技术研究综述[J]. 计算机应用研究, 2009,26( 10) : 3604-3609.
[14]  Huang Shucheng,Qu Yahui. Survey on data streams classification technologies[J]. Application Research of Computers,2009,26( 10) : 3604-3609.
[15]  Guha S,Mishra N,Motwani R,et al. Clustering Data Streams [C]/ /Proceedings of the 41st Annual Symposium on Foundations of Computer Science. California: IEEE,2000: 71-80.
[16]  张继超. 数据流的变化检测算法及其在实时汇率数据流异常检测中的应用[D]. 郑州: 郑州大学,2005.
[17]  Zhang Jichao. Change Detection Scheme of Data Stream and the Application of Detecting the Abnormal Data Blocks in Exchange Rate Data Stream[D]. Zhengzhou: Zhengzhou University,2005.
[18]  史金成. 基于相关性的数据流聚类及其应用研究[D]. 合肥: 合肥工业大学, 2007.
[19]  Shi Jincheng. Research on Data Stream Clustering and its Applications Based on Correlations [D]. Hefei: Hefei University of Technology,2007.
[20]  Xu Rui,Donald Wunsch. Survey of clustering algorithms [J].IEEE Transactions on Neural Networks,2005,16( 3) : 634-678.
[21]  陈铭,吉根林. 一种基于相似维的高维子空间聚类算法[J]. 南京师大学报: 自然科学版,2010, 33( 4) : 119-122.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133