全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2014 

一种基于导航误差空间的无人水下航行器路径规划方法

DOI: 10.3969/j.issn.1000-1093.2014.08.017, PP. 1243-1250

Keywords: 控制科学与技术,无人水下航行器,导航误差空间,全局规划,圆概率偏差

Full-Text   Cite this paper   Add to My Lib

Abstract:

?无人水下航行器(UUV)的传统路径规划方法常忽略对路径安全有重要影响的导航误差约束。针对此问题,将导航误差引入环境模型中,提出一种基于导航误差空间(NES)的全局路径规划方法。NES综合自身位置、导航误差和环境信息,将随机导航误差转化为有确定代价的约束条件。提出符合实际导航特点的导航误差传递模型,并采用圆概率偏差(CEP)评估导航精度。目标代价同时考虑了路径长度和航行安全性等因素。运用改进A*算法进行路径搜索,获得最优路径。数字海洋环境仿真实验表明,提出的规划算法简便、快速,可有效降低路径的安全风险。

References

[1]  [1] 李俊, 徐德民, 宋保维, 等. 自主式水下潜器导航技术现状与展望[J]. 中国造船, 2004, 45(3):70-77.
[2]  [7] González-Sieira A, Mucientes M, Bugarin A. A state lattice approach for motion planning under control and sensor uncertainty[C]∥ROBOT2013:First Iberian Robotics Conference. Madrid, Spain:Springer, 2014: 247-260.
[3]  [8] Censi A, Calisi D, Luca A D, et al. A Bayesian framework for optimal motion planning with uncertainty[C]∥ 2008 IEEE International Conference on Robotics and Automation. Pasadena, US:IEEE, 2008:1798-1805.
[4]  [9] Gonzalez J P. Planning with uncertainty in position using high-resolution maps[D]. Pittsburgh: Carnegie Mellon University, 2008:36-42.
[5]  [10] Lambert A, Gruyer D. Safe path planning in an uncertain-configuration space[C]∥2003 IEEE International Conference on Robotics and Automation. Taipei:IEEE, 2003:4185-4190.
[6]  [11] 冀大雄, 刘健. 水下机器人圆概率偏差的有效预报[J].计算机应用, 2012, 32(10): 2960-2962.
[7]  [14] 张红梅,赵建虎,杨鲲,等.水下导航定位技术[M].武汉:武汉大学出版社, 2010: 1-3.
[8]  [15] 王艳永, 贾兴荣, 高晖,等. 基于统计推断的惯性定位精度评估方法对比[J].计算机应用, 2012, 32(增刊2):276-279.
[9]  [16] Gonzalez J P, Dornbush A, Likhachev M. Using state dominance for path planning in dynamic environments with moving obstacles[C]∥2012 IEEE International Conference on Robotics and Automation. Saint Paul, US:IEEE, 2012:4009-4015.
[10]  [2] Berg J V D, Patil S, Alterovitz R. Motion planning under uncertainty using iterative local optimization in belief space[J]. The International Journal of Robotics Research, 2012, 31(11):1263-1278.
[11]  [3] Kurniawati H, Bandyopadhyay T, Patrikalakis N M. Global motion planning under uncertain motion, sensing, and environment map[J]. Auton Robot, 2012, 33:255-272.
[12]  [4] Chakravorty S, Kumar S. Generalized sampling-based motion planners[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2011, 41(3):856-866.
[13]  [5] Bry A, Roy N. Rapidly-exploring random belief trees for motion planning under uncertainty[C]∥IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 723-730.
[14]  [6] Du T N E,Burdick J W. Robot motion planning in dynamic, uncertain environments[J]. IEEE Transactions on Robotics, 2012, 28(1): 101-115.
[15]  [12] Moon I, Miura J, Yoshiaki S. On-line viewpoint and motion planning for efficient visual navigation under uncertainty[J]. Robotics and Autonomous Systems, 1999, 28(2/3): 237-248.
[16]  [13] Hagen O K, Anonsen K B, Mandt M. The HUGIN real-time terrain navigation system[C]∥Oceans 2010. Kjeller, Norway:MTS/IEEE, 2010:1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133