全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2014 

非平稳非高斯测量噪声条件下改进差分粒子滤波算法研究

DOI: 10.3969/j.issn.1000-1093.2014.07.015, PP. 1032-1039

Keywords: 控制科学与技术,非平稳非高斯噪声,差分粒子滤波,高斯混合密度函数,水下目标纯方位角跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对非平稳非高斯测量噪声(NSNGN)条件下差分粒子滤波(DDPF)算法状态估计精度低、易发散的问题,提出了一种改进DDPF(IDDPF)算法.IDDPF算法采用高斯混合密度函数近似估计测量噪声,替代传统算法中测量噪声的高斯密度函数近似估计,采用似然函数的对数最大化法求解高斯混合密度函数模型参数,并将该模型应用于粒子权值计算,避免了高斯密度函数近似估计噪声模型所易于导致的粒子退化问题;通过建立水下目标纯方位角跟踪系统模型,将IDDPF算法应用于闪烁测量噪声条件下水下目标纯方位角跟踪问题的求解。50次MonteCarlo对比仿真实验结果表明:在NSNGN条件下IDDPF算法具有跟踪响应快、估计精度高、鲁棒性较好等优点。

References

[1]  [3] 周东华,席裕庚,张钟俊. 一种带多重次优渐消因子的扩展卡尔曼滤波器[J]. 自动化学报, 1991, 17(6):689-696.
[2]  [6] Norgaard M, Poulsen N K, Ravn O. New development in state estimation for nonlinear systems[J]. Automatica, 2000, 36(11): 1627-1638.
[3]  [7] 王晓旭, 赵琳, 夏全喜. 噪声相关条件下Unscented卡尔曼滤波器设计[J]. 控制理论与应用, 2010, 27(10):1362-1369.
[4]  [8] 王晓旭, 赵琳, 潘泉. 基于最小均方根误差估计的噪声相关UKF设计[J]. 控制与决策, 2010, 25(9): 1393-1398.
[5]  [9] 王晓旭, 梁彦, 潘泉. 带有色量测噪声的非线性系统Unscented 卡尔曼滤波器[J]. 自动化学报, 2012, 38(6): 986-998.
[6]  [10] 范炜, 李勇. Sigma点卡尔曼滤波方法精度分析[C]∥2009 Chinese Control and Decision Conference, 2009: 2883-2888.
[7]  [12] Duník J, Simandl M, Straka O, et al. Performance analysis of derivative-free filters[C]∥Proceedings of the 44th IEEE Conference on Decision and Control. Seville: IEEE, 2005: 1941-1946.
[8]  [13] Lee D J. Nonlinear Bayesian filtering with applications to estimation and navigation[D]. Texas:Texas A&M University, 2005.
[9]  [14] Shi Y, Chongzhao H, Liang Y. Improved divided difference filter based on Newton-Raphson method for target tracking[C]∥12th International Conference on Information Fusion. Seattle, WA:IEEE, 2009: 2068-2074.
[10]  [15] Wang C Y, Zhang j, Mu J. Maximum likelihood-based iterated divided difference filter for nonlinear systems from discrete noisy measurement[J]. Sensors, 2012, 12(7): 8912-8929.
[11]  [16] Subrahmanya N, Shin Y C. Adaptive divided difference filtering for simultaneous state and parameter estimation[J]. Automatica, 2009, 45(7): 1686-1693.
[12]  [17] Miele A. Optimal trajectories and guidance trajectories for aircraft flight through wing shears[C]∥ Proceeding of 29th IEEE Conference on Decision and Control. Phoenix: IEEE, 1990: 737-743.
[13]  [18] Gondon N, Salmonod D. Novel approach to non-linear and non-Gaussian Bayesian state estimation[C]∥Proceedings of Institute Electric Engineering. Michigan: IEEE,1993,140(2): 107-113.
[14]  [19] 朱志宇. 粒子滤波算法及其应用[M]. 北京:科学出版社, 2010:123-135.
[15]  [20] 石勇, 韩崇昭. 二阶中心差分粒子滤波算法[J]. 西安交通大学学报, 2008, 42(4): 409-413.
[16]  [21] 熊剑, 刘建业, 赖际舟. 基于二阶差值滤波的粒子滤波改进算法研究[J]. 控制与决策, 2009, 24(6): 907-910.
[17]  [29] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社, 2001:157-163.
[18]  [30] Hewer G A, Martin R D. Robust preprocessing for Kalman filter of glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(1):120-128.
[19]  [31] 李建武. 非高斯噪声下基于EM改进算法的多用户检测研究[D]. 郑州:河南工业大学, 2011:53-60.
[20]  [1] Daum F. Nonlinear filters: beyond the Kalman filter[J]. IEEE AES Systems Magazine, 2005, 20(8): 57-69.
[21]  [2] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with applications to tracking and navigation[M]. New York:Wiley & Sons, 2001:157-163.
[22]  [4] Gelb A. Applied optimal estimation[M]. Cambridge:the MIT Press, 1974:567-590.
[23]  [5] Julier S J, Uhlmann J K, Durrant W H. A new approach for filtering nonlinearing systems[C]∥Proceedings of the American Control Conference. Seattle, WA:IEEE,1995: 1628-1632.
[24]  [11] Lefebvre T, Bruyninckx H, Schutter J. Kalman filter for nonli-near systems: a comparison of performance[J]. International Journal of Control, 2004, 77(7): 639-653.
[25]  [22] 朱明清, 王智灵, 陈宗海. 基于改进Bhattacharyya系数的粒子滤波视觉跟踪算法[J]. 控制与决策, 2012, 27(10): 1579-1583.
[26]  [23] 夏楠, 邱天爽, 李景春. 一种卡尔曼滤波与粒子滤波相结合的非线性滤波算法[J]. 电子学报, 2013, 41(1): 148-152.
[27]  [24] 熊剑, 刘建业, 赖际舟. 基于结构分解的GPS/INS组合导航粒子滤波技术[J]. 控制与决策, 2012, 27(6): 957-960.
[28]  [25] 王欣, 赵连义, 薛龙. 基于主成分分析的粒子滤波器目标跟踪算法[J]. 吉林大学学报:理学版, 2012, 50(6): 1156-1162.
[29]  [26] 陈志敏, 薄煜明, 吴盘龙. 基于自适应粒子群优化的新型粒子滤波在目标跟踪中的应用[J]. 控制与决策, 2013, 28(2): 193-200.
[30]  [27] Lichtenauer J, Reinders M, Hendriks E. Influence of the observation likelihood function on particle filtering performance in tracking applications[C]∥Proceedings of 6th IEEE International Conference on Automatic Face and Gesture Recognition. Netherlands: IEEE, 2004: 767-772.
[31]  [28] Mukherjee A, Sebgupta A. Parameter estimation of a signal along with non-stationary non-Gaussian noise[C]∥ the 33rd Annual Conference of the IEEE Industrial Electronica Society. Taipei:IEEE,2007: 2429-2433.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133