全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
兵工学报  2015 

基于改进离散粒子群优化算法的容差电路故障特征提取

DOI: 10.3969/j.issn.1000-1093.2015.08.017, PP. 1494-1501

Keywords: 信息处理技术,信息熵,特征提取,改进离散粒子群优化算法,容差电路

Full-Text   Cite this paper   Add to My Lib

Abstract:

?采用故障信息量对容差电路输出信号中的故障征兆进行描述,采用等间隔选取特征点、单特征点诊断信息量最大和多特征点联合诊断信息量最大3种不同的特征子集选取规则,提出了基于改进映射函数、自适应权重、基于自然选择以及基于自然选择和自适应权重的4种离散粒子群优化(BPSO)算法对特征子集进行搜索的方法,并将获取的不同最佳特征子集分别用于训练不同的神经网络,并用训练好的神经网络完成容差电路的故障定位。仿真实验结果证明了容差电路故障特征子集的改进BPSO搜索算法的有效性,故障定位效率可达95.2%.采用故障信息量对容差电路输出信号中的故障征兆进行描述,采用等间隔选取特征点、单特征点诊断信息量最大和多特征点联合诊断信息量最大3种不同的特征子集选取规则,提出了基于改进映射函数、自适应权重、基于自然选择以及基于自然选择和自适应权重的4种离散粒子群优化(BPSO)算法对特征子集进行搜索的方法,并将获取的不同最佳特征子集分别用于训练不同的神经网络,并用训练好的神经网络完成容差电路的故障定位。仿真实验结果证明了容差电路故障特征子集的改进BPSO搜索算法的有效性,故障定位效率可达95.2%.

References

[1]  [1] 廖薇,许春冬,刘锦高. 基于神经网络的模拟电路故障诊断研究[J]. 微电子学与计算机, 2010,27(5):125-128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133