%0 Journal Article %T 基于改进离散粒子群优化算法的容差电路故障特征提取 %A 刘红 %A 曹颖 %A 隆腾舞 %J 兵工学报 %P 1494-1501 %D 2015 %R 10.3969/j.issn.1000-1093.2015.08.017 %X ?采用故障信息量对容差电路输出信号中的故障征兆进行描述,采用等间隔选取特征点、单特征点诊断信息量最大和多特征点联合诊断信息量最大3种不同的特征子集选取规则,提出了基于改进映射函数、自适应权重、基于自然选择以及基于自然选择和自适应权重的4种离散粒子群优化(BPSO)算法对特征子集进行搜索的方法,并将获取的不同最佳特征子集分别用于训练不同的神经网络,并用训练好的神经网络完成容差电路的故障定位。仿真实验结果证明了容差电路故障特征子集的改进BPSO搜索算法的有效性,故障定位效率可达95.2%.采用故障信息量对容差电路输出信号中的故障征兆进行描述,采用等间隔选取特征点、单特征点诊断信息量最大和多特征点联合诊断信息量最大3种不同的特征子集选取规则,提出了基于改进映射函数、自适应权重、基于自然选择以及基于自然选择和自适应权重的4种离散粒子群优化(BPSO)算法对特征子集进行搜索的方法,并将获取的不同最佳特征子集分别用于训练不同的神经网络,并用训练好的神经网络完成容差电路的故障定位。仿真实验结果证明了容差电路故障特征子集的改进BPSO搜索算法的有效性,故障定位效率可达95.2%. %K 信息处理技术 %K 信息熵 %K 特征提取 %K 改进离散粒子群优化算法 %K 容差电路 %U http://118.145.16.231/jweb_bgxb/CN/abstract/abstract4853.shtml