Zhao S Z, Qi X Q. Signaling in plant disease resistance and symbiosis. Journal of Integrative Plant Biology, 2008, 50(7): 799-807
[2]
Hu X Y, Neill S J, Yang Y P, et al. Fungal elicitor Pep-25 increases cytosolic calcium ions, H2O2 production and activates the octadecanoid pathway in Arabidopsis thaliana. Planta, 2009, 229(6): 1201-1208
[3]
Yang L, Tang R J, Zhu J Q, et al. Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing Atlpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Molecular Biology, 2008, 66(4): 329-343
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408
[6]
更多...
[7]
Kachroo A, He Z, Patkar R, et al. Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Research, 2003, 12(5): 577-586
[8]
Blume B, Nürnberger T, Nass N, et al. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 2000, 12(8): 1425-1440
Chen L Q, Zhang L P, Yu D Q. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Molecular Plant-Microbe Interactions, 2010, 23(5): 558-565
[11]
Trouvelot S, Varnier A L, Allègre M, et al. A β-1, 3-glucan sulfate induces resistance in grapevine against Plasmopara viticola through priming of defense responses, including HR-like cell death. Molecular Plant-Microbe Interactions, 2008, 21(2): 232-243
[12]
Aziz A, Trotel-Aziz P, Dhuicq L, et al. Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology, 2006, 96(11): 1188-1194
Martín-Garrido A, Boyano-Adánez M C, Alique M, et al. Hydrogen peroxide down-regulates inositol 1, 4, 5-trisphosphate receptor content through proteasome activation. Free Radical Biology & Medicine, 2009, 47(10): 1362-1370
[19]
Lecourieux D, Ranjeva R, Pugin A. Calcium in plant defence-signalling pathways. New Phytologist, 2006, 171(2): 249-269
[20]
Zhu J Q, Zhang J T, Tang R J, et al. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Physiologia Plantarum, 2009, 136(4): 407-425
[21]
Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology, 1977, 59(3): 411-416
[22]
李华. 欧亚种葡萄品种对霜霉病感病性的研究. 园艺学报, 1988, 15(1): 23-26
[23]
Busam G, Kassemeyer H H, Matern U. Differential expression of chitinases in Vitis vinifera L. responding to systemic acquired resistance activators or fungal challenges. Plant Physiology, 1997, 115(3): 1029-1038
[24]
Yamamoto T, Iketani H, Ieki H, et al. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Reports, 2000, 19(7): 639-646
[25]
Torres M A, Jones J D G, Dangl J L. Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics, 2005, 37(10): 1130-1134