Cannon C P, Cannon P J. Physiology. COX-2 inhibitors and cardiovascular risk[J]. Science, 2012, 336(6087):1386.
[2]
Crofford L J, Breyer M D, Strand C V, et al. Cardiovascular effects of selective COX-2 inhibition: is there a class effect[J]. J Rheumatol, 2006, 33(7):1403.
[3]
Laine L, Curtis S P, Cryer B, et al. Assessment of upper gastrointestinal safety of etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the multinational etoricoxib and diclofenac arthritis long-term (MEDAL) programme: a randomised comparison[J]. Lancet, 2007, 369(9560):465.
[4]
Kerr D J, Dunn J A, Langman M J, et al. Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer[J]. N Engl J Med, 2007, 357(4):360.
[5]
Trelle S, Reichenbach S, Wandel S, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis[J]. Brit Med J, 2011, 342:c7086.
[6]
Dinchuk J E, Car B D, Focht R J, et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II[J]. Nature, 1995, 378 (6555):406.
[7]
Cheng Y, Austin S C, Rocca B, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2[J]. Science, 2002, 296(5567):539.
[8]
Egan K M, Lawson J A, Fries S, et al. COX-2-derived prostacyclin confers atheroprotection on female mice[J]. Science, 2004, 306(5703):1954.
[9]
Warner T D, Mitchell J A. COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs[J]. Lancet, 2008, 371(9608):270.
[10]
Yu Y, Ricciotti E, Scalia R, et al. Vascular COX-2 modulates blood pressure and thrombosis in mice[J]. Sci Transl Med, 2012, 4(132):132ra54.
[11]
Grosser T, Fries S, FitzGerald G A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities[J]. J Clin Invest, 2006, 116(1): 4.
[12]
Shah B H. Estrogen stimulation of COX-2-derived PGI2 confers atheroprotection[J]. Trends Endocrinol Metab, 2005, 16(5):199.
[13]
Surh Y J, Chun K S, Cha H H, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation[J]. Mutat Res, 2001, 480-481:243.
[14]
Kuwano T, Nakao S, Yamamoto H, et al. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis[J]. FASEB J, 2004, 18(2):300.
[15]
Shiokoshi T, Ohsaki Y, Kawabe J, et al. Downregulation of nitric oxide accumulation by cyclooxygenase-2 induction and thromboxane A2 production in interleukin-1β-stimulated rat aortic smooth muscle cells[J]. J Hypertens, 2002, 20(3):455.
[16]
Choy E H, Kavanaugh A F, Jones S A. The problem of choice: current biologic agents and future prospects in RA[J]. Nat Rev Rheumatol, 2013, 9(3):154.
[17]
Dinarello C A, Simon A. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases[J].Nat Rev Drug Discov, 2012, 11(8):633.
[18]
Cuzzocrea S, Riley D P, Caputi A P, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury[J]. Pharmacol Rev, 2001, 53(1):135.
[19]
Bhandari S V, Parikh J K, Bothara K G, et al. Design, synthesis, and evaluation of anti-inflammatory, analgesic, ulcerogenicity, and nitric oxide releasing studies of novel indomethacin analogs as non-ulcerogenic derivatives[J]. J Enzyme Inhib Med Chem, 2010, 25(4):520.
[20]
Huang Z, Velázquez C A, Abdellatif K R, et al. Ethanesulfohydroxamic acid ester prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs): synthesis, nitric oxide and nitroxyl release, cyclooxygenase inhibition, anti-inflammatory, and ulcerogenicity index studies[J]. J Med Chem, 2011, 54(5):1356.
[21]
Yeh C T, Ching L C, Yen G C. Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats[J]. J Nutr Biochem, 2009, 20(3):163.
[22]
Wei Q, Yin Y, Xi M, et al. Antioxidant properties of magnesium lithospermate B contribute to the cardioprotection against myocardial ischemia/reperfusion injury in vivo and in vitro[J]. J Tradit Chin Med, 2013, 33(1):85.
[23]
Cheng C Y, Su S Y, Tang N Y, et al. Ferulic acid inhibits nitric oxide-induced apoptosis by enhancing GABA(B1) receptor expression in transient focal cerebral ischemia in rats[J]. Acta Pharmacol Sin, 2010, 31(8): 889.
[24]
Wang B H, Ou-Yang J P. Pharmacological actions of sodium ferulate in cardiovascular system[J]. Cardiovasc Drug Rev, 2005, 23(2):161.
[25]
Qandil A M. Prodrugs of nonsteroidal anti-inflammatory drugs (NSAIDs), more than meets the eye: a critical review[J]. Int J Mol Sci, 2012, 13(12):17244.
[26]
Wang Q H, Kuang X H, Su Y, et al. Naturally derived anti-inflammatory compounds from Chinese medicinal plants[J]. J Ethnopharmacol, 2013, 146(1):9.
[27]
Mao J L, Ran X K, Tian J Z, et al. Design, synthesis and biological evaluation of novel 4-hydroxybenzene acrylic acid derivatives[J]. Bioorg Med Chem Lett, 2011, 21(5):1549.
[28]
毛近隆. 对羟基苯丙烯酸衍生物及应用:中国, 2010069150[P]. 2010-06-24.
[29]
Bertagnolli M M, Eagle C J, Zauber A G, et al. Celecoxib for the prevention of sporadic colorectal adenomas[J]. N Engl J Med, 2006, 355(9):873.
[30]
Oshima M, Dinchuk J E, Kargman S L, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2) [J]. Cell, 1996, 87(5):803.
[31]
Mitchell J A, Warner T D. COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs[J]. Nat Rev Drug Discov, 2006, 5(1):75.
[32]
Kunsch C, Medford R M. Oxidative stress as a regulator of gene expression in the vasculature[J]. Circ Res, 1999, 85(8):753.
[33]
Griendling K K, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease[J]. Circ Res, 2000, 86(5):494.
[34]
Liu T Z, Lee K T, Chern C L, et al. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB[J]. Ann Clin Lab Sci, 2001, 31(4):383.
[35]
Ross R. Atherosclerosis——an inflammatory disease[J]. N Engl J Med, 1999, 340(2):115.
[36]
Ganz P, Hsue P Y. Endothelial dysfunction in coronary heart disease is more than a systemic process[J]. Eur Heart J, 2013, 34(27):2025.
[37]
Altman R. Risk factors in coronary atherosclerosis athero-inflammation: the meeting point[J]. Thromb J, 2003, 1(1):1.
[38]
Stocker R, Keaney J F. Role of oxidative modifications in atherosclerosis[J]. Physiol Rev, 2004, 84(4):1381.
[39]
Guzik T J, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation[J]. J Physiol Pharmacol, 2003, 54(4):469.
[40]
Libby P. Inflammation and cardiovascular disease mechanisms[J]. Am J Clin Nutr, 2006, 83(2):456S.
[41]
Hopkins P N. Molecular biology of atherosclerosis[J]. Physiol Rev, 2013, 93(3):1317.
[42]
Braughler J M, Hall E D. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation[J]. Free Radic Biol Med, 1989, 6(3):289.
[43]
Borhade N, Pathan A R, Halder S, et al. NO-NSAIDs. Part 3: nitric oxide-releasing prodrugs of non-steroidal anti-inflammatory drugs[J]. Chem Pharm Bull (Tokyo), 2012, 60(4):465.
[44]
Dufresne C, Berthelette C, Li L, et al. Nitric oxide releasing prodrugs of diaryl-2-(5H)- furanones as cyclooxygenase-2 inhibitors: Canada, 2005070874[P]. 2005-04-08.
[45]
Biava M, Porretta G C, Poce G, et al. Novel analgesic/anti-inflammatory agents: diarylpyrrole acetic esters endowed with nitric oxide releasing properties[J]. J Med Chem, 2011, 54(22):7759.
[46]
Martelli A, Testai L, Anzini M, et al. The novel anti-inflammatory agent VA694, endowed with both NO-releasing and COX2-selective inhibiting properties, exhibits NO-mediated positive effects on blood pressure, coronary flow and endothelium in an experimental model of hypertension and endothelial dysfunction[J]. Pharmacol Res, 2013, 78C:1.
[47]
Maiolino G, Rossitto G, Caielli P, et al. The role of oxidized low-density lLipoproteins in atherosclerosis: the myths and the facts[J]. Mediators Inflamm, 2013, 2013:714653.
[48]
Arfian N, Emoto N, Vignon-Zellweger N, et al. ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury[J]. Biochem Biophys Res Commun, 2012, 425(2):443.
[49]
Kubes P, McCafferty D M. Nitric oxide and intestinal inflammation[J]. Am J Med, 2000, 109(2):150.
[50]
Brzozowski T, Konturek P C, Pajdo R, et al. Physiological mediators in nonsteroidal anti-inflammatory drugs (NSAIDs)-induced impairment of gastric mucosal defense and adaptation. Focus on nitric oxide and lipoxins[J]. J Physiol Pharmacol, 2008, 59(Suppl 2):89.