Andersen T G, Bollerslev T, Diebod F X. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility [J]. The Review of Economics and Statistics, 2007, 89(4): 701-720.
[8]
Giot P, Laurent S. The information content of implied volatility in the light of the jump/continuous decomposition of realized volatility [J]. Journal of Future Markets, 2007, 27(3): 337-359.
Shalen C T. Volume, volatility and dispersion of beliefs [J]. Review of Financial Studies, 1993, 6(2):405-434.
[11]
Wang Jiang. A model of competitive stock trading volume [J]. Journal of Political Economy, 1994, 102(1):127-168.
[12]
Buraschi A, Trojani F, Vedolin A. The joint behavior of credit spreads, stock options and equity returns when investors disagree [R]. Working Paper, Imperial College,2007.
Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Economic Statistics, 2006, 24(2): 127-218.
[15]
Barndor-Nielsen O E, Shephard N. Realized power variation and stochastic volatility [J]. Bernoulli, 2003, 9(2): 243-265.
[16]
Barndor-Nielsen O E, Shephard N. Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics[J]. Econometrica, 2004, 72(3): 885-925.
[17]
Barndor-Nielsen O E, Shephard N. Impact of jumps on returns and realized variances: econometric analysis of time-deformed levy process[J]. Journal of Econometrics, 2006, 131(1): 217-252.
[18]
Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4):456-499.
[19]
Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2):276-288.
[20]
Forsberg L, Ghysels, E. Why do absolute returns predict volatility so well?[J]. Journal of Financial Econometrics, 2007, 5(1): 31-67.
[21]
Ghysels E, Valkanov R. Linear time-series processes with mixed data sampling and MIDAS regression models [R]. Discussion paper, UNC and UCSD, 2006.
[22]
Ghysels E, Santa-Clara P, Valkanov R. Predicting volatility: getting the most out of return data sampled at different frequencies[J]. Journal of Econometrics, 2006b, 131(1): 59-95.
[23]
Ghysels E., Santa-Clara P, Valkanov R. MIDAS regressions: further results and new directions [J]. Econometric Reviews, 2007, 26(1): 53-90.
[24]
Ghysels E, Santa-Clara P, Valkanov R. The MIDAS touch: mixed data sampling regression models[R]. Discussion paper, UNC and UCLA, 2010.
[25]
Potton A J. Volatility forecast comparison using imperfect volatility proxies[J]. Journal of Econometrics, 2011, 160(1): 246-256.
[26]
Hansen P R, Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?[J]. Journal of Applied Econometrics, 2005, 20(7): 873-889.
[27]
Maheu J M, Mc Curdy H. New arrival, jump dynamics and volatility components for individual stock returns[J]. Journal of Finance, 2004, 59(2): 755-793.
[28]
Duffie D, Pan J, Singleton K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6):1343-1376.
[29]
Eraker B, Johannes M S, Polson N G. The impact of jumps in volatility and return[J]. Journal of Finance, 2003, 58(3):1269-1300.