全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非仿射随机波动率模型的期权定价研究

, PP. 1-7

Keywords: 期权定价,非仿射随机波动率,快速傅里叶变换,扰动法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文应用快速傅里叶变换(FFT)方法,考虑了标的资产服从非仿射随机波动率模型下的期权定价问题。首先,应用偏微分方程扰动分析法,得到了标的资产对数价格分布的近似特征函数;然后,应用傅里叶变换及其逆变换,推导了欧式期权的拟闭型定价公式,对此公式应用FFT方法可以快速得到高精度数值解。数值实验表明,FFT期权定价方法是非常精确的和有效的;最后,给出了基于恒生指数认购权证的实证研究。实证结果表明,非仿射随机波动率期权定价模型比经典的Black-Scholes模型具有更高的定价精确性。

References

[1]  Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81(3): 637-654.
[2]  Black F. Studies of stock price volatility changes [C]. Proceedings of the 1976 Meeting of Business and Economic Statistics Section, American Statistical Association, 1976.
[3]  Christie A A. The stochastic behavior of common stock variances: value, leverage, and interest rate effects[J]. Journal of Financial Economics, 1982, 10(4): 407-432.
[4]  Cox J C, Ross S A. The valuation of options for alternative stochastic processes[J]. Journal of Financial Economics, 1976, 3(1-2): 145-166.
[5]  Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1-2): 125-144.
[6]  Hull J C, White A D. The pricing of options on asset with stochastic volatilities[J]. Journal of Finance, 1987, 42(2): 281-300.
[7]  Stein E M, Stein J C. Stock price distributions with stochastic volatility: an analytic approach[J]. Review of Financial Studies, 1991, 4: 727-752.
[8]  Heston S L. A closed-form solution for options with stochastic volatility with applications to bond and currency options [J]. Review of Financial Studies, 1993, 6(2): 327-343.
[9]  Andersen T G, Benzoni L, Lund J. Estimating jump-diffusions for equity returns[J]. Journal of Finance, 2002, 57: 1239-1284.
[10]  Chacko G, Viceira L. Spectral GMM estimation of continuous-time processes[J]. Journal of Econometrics, 2003, 116: 259-292.
[11]  Chernov M, Gallant A R, Ghysels E, Tauchen G. Alternative models for stock price dynamics [J]. Journal of Econometrics, 2003, 116: 225-257.
[12]  Jones C. The dynamics of stochastic volatility: evidence from underlying and options markets [J]. Journal of Econometrics, 2003, 116: 181-224.
[13]  Ait-Sahalia Y, Kimmel R. Maximum likelihood estimation of stochastic volatility models[J]. Journal of Financial Economics, 2007, 83: 413-452.
[14]  Chourdakis K. Non-affine option pricing [J]. Journal of Derivatives, 2004, 11(3): 10-25.
[15]  Christoffersen P, Jacobs K, Mimouni K. An empirical comparison of affine and non-affine models for equity index options [R]. Working Paper, 2006.
[16]  Christoffersen P, Jacobs K, Mimouni K. Volatility dynamics for the S&P 500: evidence from realized volatility, daily returns, and option prices[J]. Review of Financial Studies, 2010, 23(8): 3141-3189.
[17]  Durham G B. Risk-neutral modelling with affine and non-affine models [R]. Working Paper, 2010.
[18]  Hansis A. Affine versus non-affine stochastic volatility and the impact on asset allocation [R]. Working Paper, 2010.
[19]  Ignatieva K, Rodrigues P J M, Seeger N. Stochastic volatility and jumps: exponentially affine yes or no? an empirical analysis of S&P 500 dynamics[R]. Working Paper, 2009.
[20]  Chourdakis K, Dotsis G. Maximum likelihood estimation of non-affine volatility processes[J]. Journal of Empirical Finance, 2011, 18(3): 533-545.
[21]  Drimus G G. Options on realized variance by transform methods: a non-affine stochastic volatility model[J]. Quantitative Finance, forthcoming, 2012.
[22]  Carr P, Madan D. Option valuation using the fast Fourier transform[J]. Journal of Computational Finance, 1999, 2: 61-73.
[23]  Yu Jun. On leverage in a stochastic volatility model[J]. Journal of Econometrics, 2005, 127: 165-178.
[24]  Chan K C, Karolyi G A, Longstaff F A, et al. An empirical comparison of alternative models of the short-term interest rate[J]. Journal of Finace, 1992, 47(3): 1209-1227.
[25]  Nelson D B. ARCH models as diffusion approximations[J]. Journal of Econometrics, 1990, 45: 7-38.
[26]  Kevorkian J, Cole J D. Perturbation methods in applied mathematics[M]. New York: Springer-Verlag, 1981.
[27]  Mikhailov S, Nogel U. Heston's stochastic volatility model implementation, calibration and some extensions[M]//Wilmott P.The best of Wilmott.Chichester:John Wiley & Sons,2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133