全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

典型事实、混合Copula函数与金融市场相依结构研究

, PP. 20-29

Keywords: 金融市场,典型事实,混合Copula,相依结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?运用ARFIMA-FIAPARCH-skst模型对沪深300指数和香港恒生指数建立收益-波动模型,然后结合估计的参数对模型进行修正以确立最终模型,排除金融市场典型事实对相依关系的影响,进而运用由Clayton、Frank和Gumbel组成的混合copula模型对相依结构进行建模。研究结果表明:内地市场和香港市场均未观察到显著的杠杆效应;由Clayton、Frank和Gumbel组成的混合Copula模型能够准确地描述两个市场之间的相依结构,且两个市场下尾相依关系要强于上尾的相依关系,通过动态混合copula也验证了这一明显的非对称关系。

References

[1]  Cont R. Empirical properties of assets returns:Stylized facts and statistical issues [J]. Quantitative Finance, 2001, 1:223-236.
[2]  Longin F, Bruno S. Is the correlation in international equity returns constant:1960-1990[J]. Journal of International Money and Finance.1995, 14(1):3-26.
[3]  林宇.中国与部分国际股市动态极值风险传导效应研究[J]. 中国管理科学, 2008, 16(4):36-43. 浏览
[4]  陈王, 魏宇, 淳伟德, 等.中国股市与周边股市波动风险传导效应研究[J]. 中国管理科学, 2011, 19(6):31-39. 浏览
[5]  Hong Yongmiao, Liu Yanhui, Wang Shauyang. Granger causality in risk and detection of extreme risk spillover between financial markets[J]. Journal of Econometrics, 2009, 150(2):271-287.
[6]  易文德.基于copula理论的金融风险相依结构模型及应用 [M]. 北京:中国经济出版社, 2011.
[7]  Nelsen R B. An introduction to copulas[M]. Berlin:Springer, 1999.
[8]  Bouyé E, Durrleman V, Nikeghbali A, et al. Copulas for finance:A reading guide and some applications[R]. Working Paper, Financial Econometrics Research Center, City University Business School, London, 2000.
[9]  Yi Wende, Lao Shaoyi. Statistical properties of parametric estimators for Markov chain vectors based on copula models [J]. Journal of statistical Planning and Inference, 2010, 140(6):1465-1480.
[10]  易文德.基于ARMA-GARCH-COUPULA模型的交易量与股价波动相依关系[J]. 系统管理学报, 2012, 21(5):696-703.
[11]  吴吉林. 基于机制转换copula模型的股市量价尾部关系研究[J]. 中国管理科学, 2012, 20(5):16-23. 浏览
[12]  吴吉林, 张二华. 基于机制转换混合copula模型的我国股市间极值相依性[J]. 系统工程理论与实践, 2012, 32(8):1662-1672.
[13]  韦艳华, 张世英. 基于copula 函数的金融市场尾部相关性分析[J]. 管理学报, 2005, 2(5):601-605.
[14]  任仙玲, 张世英. 基于copula函数的金融市场尾部相关性分析[J]. 统计与信息论坛, 2008, 23(6):66-71.
[15]  闫海梅, 王波. 沪深300指数与沪深股市尾部相关性分析[J]. 数学的实践与认识, 2010, 40(22):50-55.
[16]  Lamoureux C G, Lastrapes W D. Forecasting stock-return variance:Toward an understanding of stochastic implied volatilities [J]. Review of Financial Studies, 1993, 6(2):293-326.
[17]  Bollerslev T. Generalized autoregressive conditional heteroskeda sticity [J]. Journal of Econometrics, 1986, 31(3):307-327.
[18]  Glosten L R, Jagannathan R, Runkle D E.On the relation between the expected value and the volatility of the nominal excess return on stocks[J]. The Journal of Finance, 1993, 48(5):1779-1801.
[19]  Christoffersen P F. Elements of financial risk management [M]. Massachusetts:Academic Press, 2002.
[20]  Dowd K. Measuring market risk [M]. New Jersey:John Wiley & Sons, Ltd, 2005.
[21]  Ding Zhuanxin, Granger C W J, Engle R F. A long memory property of stock market returns and a new model [J]. Journal of Empirical Finance, 1993, 1(1):83-106.
[22]  Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3):307-327.
[23]  Engle R F.Autoregressive conditional heteroskedasticty with estimates of the variance of U. K. inflation [J]. Econometrica, 1982, 50(4):987-1008.
[24]  Baillie R T, Bollerslev T, Mikkelsen H O. Fractionally integrated generlized autoregressive conditional heteroscedasticity [J]. Journal of Econometrics, 1996, 74(1):3-30.
[25]  Genest C, MacKay J. The Joy of copulas:bivariate distributions with uniform marginals[J]. The American Statistician, 1986, 40(4):280-280.
[26]  Hu Ling. Dependence patterns across financial markets:A mixed copula approach[J]. Applied Financial Economics, 2006, 16(10):717-729.
[27]  Frahm G, Junker M, Schmidt R. Estimating the tail-dependence coefficient:Properties and pitfalls[J]. Insurance:Mathematics and Economics, 2005, 37(1):80-100.
[28]  林宇. 典型事实、极值理论与金融市场动态风险测度研究 [J]. 投资研究, 2012, 31(1):41-56.
[29]  King M, Wadhwani S. Transmission of volatility between stock markets[J]. Review of Financial Studies, 1990, 3(1):5-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133