全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

跳跃—扩散条件下信用风险相关性度量的变结构Copula模型

, PP. 1-12

Keywords: 跳跃-扩散,双指数模型,变结构Copula,信用风险相关性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对现有研究大多只考虑扩散条件的不足,构建了跳跃—扩散条件下信用风险相关性度量的变结构Copula模型。运用1991~2010年中国上市公司的数据构建了行业信用风险指数,运用双指数跳跃扩散模型来识别行业信用风险的跳跃扩散点,发现在样本期,共同因素与行业特质因素引发了行业信用风险的多次跳跃。在识别跳跃点的基础上,构建了变结构Copula模型,该模型能较准确地描述信用风险相关性的变化,各行业之间的信用风险相关系数在0.5以上,并且上市公司信用风险的变化呈现出"一损俱损"的特征,而"一荣俱荣"的特征并不明显。构建的模型及实证结论将有助于理解信用风险相关或传染,从而为信贷组合管理和风险管理提供更多的方法与经验。

References

[1]  Markowitz H. Portfolio selection: Efficient diversification of investments[M]. New York: Wiley, 1959.
[2]  Luenberger D G. Investment science[M]. New York: Oxford University Press, 1998.
[3]  Chen N, Kou S G. Credit spreads, optimal capital structure, and implied volatility with endogenous default and jump risk[J]. Mathematical Finance, 2009, 19(3): 343-378.
[4]  Cover T M, Gluss D H. Empirical Bayes stock market portfolios[J]. Advances in applied mathematics, 1986, 7(2):170-181.
[5]  Kou S G. A jump diffusion model for option pricing[J]. Management Science, 2002, 48(8): 1086-1101.
[6]  Cover T M, Thomas J A. Elements of information theory[M]. New York: John Wiley & Sons, 1991.
[7]  Patton A J. Estimation of multivariate models for time series of possibly different lengths[J]. Journal of Applied Econometrics, 2006, 21(2): 147-173.
[8]  Breiman L. Optimal gambling systems for favorable games[J]. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1961, 1:65-78.
[9]  Gyorfi L, Ottucsák G, Urbán A. Empirical log-optimal portfolio selections: a survey[R]. Working Paper, Budapest University of Technology and Economics, 2007.
[10]  Hastings W K. Monte Carlo sampling methods using Markov chains and their applications[J].Biometrika, 1970, 57(1): 97-109.
[11]  朱慧明, 郝立亚, 虞克明, 等. 基于MCMC模拟的贝叶斯复合状态信用溢价模型研究. 中国管理科学, 2011, 19(3): 1-10. 浏览
[12]  Robert M C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1-2): 125-144.
[13]  Lo A W, MacKinlay A C. Stock market prices do not follow random walks: Evidence from a simple specification test[J]. Review of Financial Studies, 1988, 1(1):41-66.
[14]  刘兴华, 杨建梅. 证券市场的条件可预测性分析[J]. 管理科学学报, 2008, 11(6):77-83.
[15]  Kou S G. A jump diffusion model for option pricing[J]. Management Science, 2002, 48(8): 1086-1101.
[16]  张世英, 张彤. 双指数跳跃扩散模型的MCMC估计[J]. 系统工程学报, 2006, 21(2): 113-118.
[17]  刘晓曙. 三种双指数跳跃扩散模型实证比较研究[J]. 南方经济, 2008, (2): 64-72.
[18]  Gyorfi L, Schafer D. Nonparametric prediction[M]//. Suykens J A K, Horváth G, Basu S, et al. Advances in learning theory: Methods, models and applications. Netherlands: IOS Press, 2003.
[19]  Lin Shuling. A new two-stage hybrid approach of credit risk in banking industry[J]. Expert System with Applications, 2009, 36(4): 8333-8341.
[20]  Gyorfi L, Urbán A, Vajda I. Kernel-based semi-log-optimal empirical portfolio selection strategies[J]. International Journal of Theoretical and Applied Finance, 2007, 10(3):505-516.
[21]  Yu Lean, Yue Wuyi, Wang Shouyang, et al. Support vector machine based multi-agent ensemble learning for credit risk evaluation[J]. Expert System with Applications, 2010, 37(2): 1351-1360.
[22]  Gyorfi L, Udina F, Walk H. Nonparametric nearest neighbor based empirical portfolio selection strategies[J]. Statistics and Decisions, 2008, 26(2):145-157.
[23]  Nguyen P. Macroeconomic factors andJapan's industry risk[J]. Journal of Multi-national Financial Management, 2007, 17(2): 173-185.
[24]  Borodin A, El-Yaniv R, Gogan V. Can we learn to beat the best stock[J]. Journal of Artificial Intelligence Research, 2004, 21:579-594.
[25]  Ruud V. Modeling industry-level corporate credit risk for the netherlands[R]. Working paper, De Nederlandsche Bank, 2008.
[26]  Kjell B N. A model for predicting aggregated corporate credit risk[J]. Economic Bulletin of Norges Bank, 2010, 81(1): 25-34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133