全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑共同跳跃的波动建模:基于高频数据视角

, PP. 46-53

Keywords: 跳跃检验,共同跳跃,多变量,波动率建模,高频数据

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对共同跳跃研究的不足,文章沿袭已有理论框架,采用常用的日内跳跃检验方法,构建了共同跳跃(协)方差和连续样本路径(协)方差,并扩展HAR-RV-CJ模型,将(协)方差、共同跳跃置于统一波动模型框架内。通过对上证综指和深圳成指高频数据的实证分析,结果显示两指数共同跳跃占其各自的跳跃比例较大,且基本上都是同方向的跳跃;共同跳跃(协)方差和连续样本路径(协)方差对已实现(协)方差的影响都是显著的,考虑共同跳跃影响有助于提高(协)方差建模的准确性。此研究有助于投资者优化投资策略和为监管部门提供监管基础。

References

[1]  唐勇,张伯新.基于高频数据的中国股市跳跃特征实证分析[J].中国管理科学,2013,21(5):29-39. 浏览
[2]  Barndorff-Nielsen O E, Shephard N. Measuring the impact of jumps in multivariate price processes using bipower covariation[R]. Working Paper,Nuffield College, Oxford University, 2004.
[3]  Jacod J, Todorov V. Testing for common arrivals of jumps for discretely observed multidimensional processes[J]. The Annals of Statistics, 2009, 37(4): 1792-1838.
[4]  Bollerslev T, Law T H, Tauchen G. Risk, jumps, and diversification[J]. Journal of Econometrics, 2008, 144(1): 234-256.
[5]  Liao Yin, Anderson H M. Testing for co-jumps in high-frequency financial data: An approach based on first-high-low-last prices[R]. Working Paper Monash University, 2011.
[6]  Gobbi F, Mancini C. Diffusion covartation and co-jumps in bidimensional asset price processes with stochastic volatility and infininte activityl levy jumps[R]. Working Paper, Universiy of Bologna,2008.
[7]  Mancini C, Gobbi F. Identifying the Brownian covariation from the co-jumps given discrete observations[J]. Econometric Theory, 2012, 28(2): 249.
[8]  Lahaye J, Laurent S, Neely C J. Jumps, cojumps and macro announcements[J]. Journal of Applied Econometrics, 2011, 26(6): 893-921.
[9]  Dungey M, Hvozdyk L. Cojumping: Evidence from the US Treasury bond and futures markets[J]. Journal of Banking & Finance, 2012, 36(5): 1563-1575.
[10]  Gilder D, Shackleton M B, Taylor S J. Cojumps in stock prices: Empirical evidence[J]. Journal of Banking & Finance, 2013,40(2):443-459.
[11]  欧丽莎,袁琛,李汉东.中国股票价格跳跃实证研究[J].管理科学学报,2011,14(9):60—66.
[12]  Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2): 174-196.
[13]  Andersen T G, Bollerslev T, Diebold F X. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility[J]. The Review of Economics and Statistics, 2007, 89(4): 701-720.
[14]  Corsi F, Renò R. Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling[J]. Journal of Business & Economic Statistics, 2012, 30(3): 368-380.
[15]  Clements A, Liao Yin. The dynamics of co-jumps, volatility and correlation[R]. Working Paper,National Centre for Econometric Research, 2013.
[16]  Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility [J]. Econometrica, 2003, 71(2): 579-625.
[17]  Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps [J]. Journal of financial econometrics, 2004, 2(1): 1-37.
[18]  Bauwens L, Hafner C, Laurent B. Volatility models and their applications [M].New Jersy: Weily,2012.
[19]  Andersen T G, Bollerslev T, Dobrev D. No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and iid noise: Theory and testable distributional implications[J]. Journal of Econometrics, 2007, 138(1): 125-180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133