全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矩形构件涡振与驰振耦合状态下的幅值估算

, PP. 74-84

Keywords: 桥梁工程,矩形构件,风洞试验,经验公式,回归分析,软驰振

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了深入研究大长细比矩形截面杆件的风致振动机理,首先对一个典型宽高比的矩形断面开展节段模型风洞试验,识别截面的主要气动参数,实测涡振与驰振耦合状态下的“软驰振”响应;然后基于试验模型的结构动力参数采用Tamura数学模型进行相关的数值模拟,并与试验结果对比,研究流体参数以及结构参数对结构响应幅值的影响。通过对比研究确定影响“软驰振”幅值响应的主要参数,并基于广泛收集的实测数据开展回归分析,建立用于估算矩形截面构件“软驰振”幅值响应的经验公式。研究结果表明:矩形截面宽高比是幅值响应的关键影响参数,回归分析中多项式拟合曲线误差较小,建立的幅值估算经验公式合理可靠。

References

[1]  许福友,丁 威,姜 峰,等.大跨度桥梁涡激振动研究进展与展望[J].振动与冲击,2010,29(10):40-46. XU Fu-you,DING Wei,JIANG Feng,et al.Development and Prospect of Study on Vortex-induced Vibration on Large-span Bridges[J].Journal of Vibration and Shock,2010,29(10):40-46.
[2]  WILLIAMSON C H K,GOVARDHAN R.Vortex-induced Vibrations[J].Annual Review of Fluid Mechanics,2004,36(1):413-455.
[3]  DEN HARTOG P D.Transmission-line Vibration Due to Sleet[J].Institute of Electrical Engineers,1932,51(1):1074-1086.
[4]  PARKINSON G V,BROOKS N P H.On the Aeroelastic Instability of Bluff Cylinders[J].Journal of Applied Mechanics,1961,28(2):252-258.
[5]  MACDONALD J H G,LAROSE G L.A Unified Approach to Aerodynamic Damping and Drag/Lift Instabilities,and Its Application to Dry Inclined Cable Galloping[J].Journal of Fluids and Structures,2006,22(2):229-252.
[6]  PARKINSON G V,SMITH J D.The Square Prism As an Aeroelastic Non-linear Oscillator[J].Journal of Mechanics and Applied Mathematics,1964,17(2):225-239.
[7]  CORLESS R M,PARKINSON G V.A Model of the Combined Effects of Vortex-induced Oscillation and Galloping[J].Journal of Fluids and Structures,1988,2(3):203-220.
[8]  FACCHINETTIA M L,DE LANGREA E,BIOLLEY F.Coupling of Structure and Wake Oscillators in Vortex-induced Vibrations[J].Journal of Fluids and Structures,2004,19(1):123-140.
[9]  TAMURA Y,MATSUI G.Wake-oscillator Model of Vortex-induced Oscillation of Circular Cylinder[C]//CERMK J E,COLLINS F.Proceedings of the 5th International Conference on Wind Engineering.Denver:Colorado State University,1979:1085-1094.
[10]  TAMURA Y,SHIMADA K.A Mathematical Model for the Transverse Oscillations of Square Cylinders[C]//BHRA J.International Conference on Flow Induced Vibrations,Bowness on Windermere.Bowness-on-windermere:Carlisle College,1987:267-275.
[11]  ALLISON E,CORLESS R M.Prediction of Closed-loop Hysteresis with a Flow-induced Vibration Model[C]//TABARROK B,DOST S.Proceedings of 15th Canadian Congress of Applied Mechanics.London:Imperial College London,1995:512-513.
[12]  GOVARDHAN R N,WILLIAMSON C H K.Defining the Modified Griffin Plot' in Vortex-induced Vibration:Revealing the Effect of Reynolds Number Using Controlled Damping[J].Journal of Fluid Mechanics,2006,561(1):147-180.
[13]  鲜 荣,廖海黎,李明水.大跨主梁沿跨向涡振Scanlan非线性模型应用[J].振动与冲击,2009,28(4):54-58. XIAN Rong,LIAO Hai-li,LI Ming-shui.Application of Scanlan's Nonlinear Model to Describe Spanwise Vortex-induced Vibration of a Large-span Bridge Girder[J].Journal of Vibration and Shock,2009,28(4):54-58.
[14]  张志田,陈政清.桥梁节段与实桥涡激共振幅值的换算关系[J].土木工程学报,2011,44(7):77-82. ZHANG Zhi-tian,CHEN Zheng-qing.Similarity of Amplitude of Sectional Model to That of Full Bridge in the Case of Vortex-inducted Resonance[J].Journal of Civil Engineering,2011,44(7):77-82.
[15]  MATSUMOTO M.Vortex Shedding of Bluff Bodies:A Review[J].Journal of Fluids and Structures,1999,13(1):791-811.
[16]  朱乐东.桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J].工程力学,2005,10(5):204-208. ZHU Le-dong.Mass Simulation and Amplitude Conversion of Bridge Sectional Model Test for Vortex-excited Resonance[J].Engineering Mechanics,2005,10(5):204-208.
[17]  BS EN 1990:2002,Eurocode-Basic of Structural Design[S].
[18]  GARRETT J L.Flow-induced Vibration of Elastically Supported Rectangular Cylinders[D].Ames:Iowa State University,2003.
[19]  PARKINSON G V,WAWZONAK M A.Some Consideration of Combined Effects of Galloping and Vortex Resonance[J].Journal of Wind Engineering and Industrial Aerodynamics,1981,8(1):135-143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133