Tu Z W, Jian J G. Estimating the ultimate bounds and positively invariant sets for a class of general Lorenz-type new chaotic systems. In: Proceedings of International Workshop on Chaos-Fractals Theories and Applications. Kunming, China: IEEE, 2010. 225-228
[3]
Borrelli F, Vecchio C D, Parisio A. Robust invariant set theory applied to networked buffer-level control. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 2111-2116
[4]
Davila J, Poznyak A. Attracting ellipsoid method application to designing of sliding mode controllers. In: Proceedings of the 11th International Workshop on Variable Structure Systems. Mexico City, Mexico: IEEE, 2010. 83-88
[5]
Rakovic S V, Baric M. Parameterized robust control invariant sets for linear systems: theoretical advances and computational remarks. IEEE Transactions on Automatic Control, 2010, 55(7): 1599-1614
[6]
Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767
[7]
Zhou B, Duan G R, Lin Z L. Approximation and monotonicity of the maximal invariant ellipsoid for discrete-time systems by bounded controls. IEEE Transactions on Automatic Control, 2010, 55(2): 440-446
[8]
Wu M, Yan G F, Lin Z Y, Liu M Q. Characterization of backward reachable set and positive invariant set in polytopes. In: Proceedings of American Control Conference. St. Louis, USA: IEEE, 2009. 4351-4356
[9]
Lee Y, Kouvaritakis B. Robust receding horizon predictive control for systems with uncertain dynamics and input saturation. Automatica, 2000, 36(10): 1497-1504
[10]
Zhang L, Zhang Y, Zhang S L, Heng P A. Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks. IEEE Transactions on Automatic Control, 2009, 54(6): 1341-1347
[11]
Masubuchi I. Analysis of positive invariance and almost regional attraction via density functions with converse results. IEEE Transactions on Automatic Control, 2007, 52(7): 1329-1333