全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续非线性系统的滑模鲁棒正不变集控制

DOI: 10.3724/SP.J.1004.2011.01395, PP. 1395-1401

Keywords: 滑模,正不变集,单向辅助面滑模控制,状态和控制有界约束

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对一类具有控制和状态有界约束的连续非线性系统,提出了一种基于单向辅助面滑模控制的正不变集设计方法.该方法通过将约束条件引入单向辅助面的设计中,利用单向辅助面构造系统状态的正不变集,以保证系统状态和控制输入在整个过程中都能满足约束条件.同时,滑模控制器设计不再受到切换面的限制,一些不稳定的超平面也可以作为单向辅助面以设计控制器.随后给出该方法的稳定性分析以及正不变集的理论证明,并且通过仿真验证了设计方法的有效性.

References

[1]  Jiang Wei-Hua, Huang Lin, Chu Tian-Guang. Robust positively invariant sets of discrete-time nonlinear and time-variable convex polyhedral system family. Acta Automatica Sinica, 2001, 27(5): 631-636(蒋卫华, 黄琳, 楚天广. 离散非线性时变凸多面体系统族的鲁棒正不变集. 自动化学报, 2001, 27(5): 631-636)
[2]  Tu Z W, Jian J G. Estimating the ultimate bounds and positively invariant sets for a class of general Lorenz-type new chaotic systems. In: Proceedings of International Workshop on Chaos-Fractals Theories and Applications. Kunming, China: IEEE, 2010. 225-228
[3]  Borrelli F, Vecchio C D, Parisio A. Robust invariant set theory applied to networked buffer-level control. In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 2111-2116
[4]  Davila J, Poznyak A. Attracting ellipsoid method application to designing of sliding mode controllers. In: Proceedings of the 11th International Workshop on Variable Structure Systems. Mexico City, Mexico: IEEE, 2010. 83-88
[5]  Rakovic S V, Baric M. Parameterized robust control invariant sets for linear systems: theoretical advances and computational remarks. IEEE Transactions on Automatic Control, 2010, 55(7): 1599-1614
[6]  Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767
[7]  Zhou B, Duan G R, Lin Z L. Approximation and monotonicity of the maximal invariant ellipsoid for discrete-time systems by bounded controls. IEEE Transactions on Automatic Control, 2010, 55(2): 440-446
[8]  Wu M, Yan G F, Lin Z Y, Liu M Q. Characterization of backward reachable set and positive invariant set in polytopes. In: Proceedings of American Control Conference. St. Louis, USA: IEEE, 2009. 4351-4356
[9]  Lee Y, Kouvaritakis B. Robust receding horizon predictive control for systems with uncertain dynamics and input saturation. Automatica, 2000, 36(10): 1497-1504
[10]  Zhang L, Zhang Y, Zhang S L, Heng P A. Activity invariant sets and exponentially stable attractors of linear threshold discrete-time recurrent neural networks. IEEE Transactions on Automatic Control, 2009, 54(6): 1341-1347
[11]  Masubuchi I. Analysis of positive invariance and almost regional attraction via density functions with converse results. IEEE Transactions on Automatic Control, 2007, 52(7): 1329-1333

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133