全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于I&I与Hamiltonian理论的机器人速度观测器设计

DOI: 10.3724/SP.J.1004.2012.01757, PP. 1757-1764

Keywords: 观测器,浸入与不变流形,Hamiltonian,机器人

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近期,Astolfi和Stamnes等对一类机械系统设计了速度观测器.采用了分步设计Lyapunov函数的方法,这导致观测误差系统结构复杂、证明繁琐.而且设计的偏微分方程(Partialdifferentialequation,PDE)不合理,导致计算量大、不易求解.本文在Astolfi和Stamnes等的基础上,对一类机械(机器人)系统设计了速度观测器.通过对观测误差系统的Hamiltonian实现,克服了Astolfi和Stamnes等方法中的上述缺点.并设计了一类偏微分方程,避免了繁琐计算.最后,将所设计的速度观测器应用到一类关节机器人中,仿真结果验证了设计方法的有效性.

References

[1]  Yin Feng, Wang Yao-Nan, Wei Shu-Ning. Inverse kinematic solution for robot manipulator based on electromagnetism-like and modified DFP algorithms. Acta Automatica Sinica, 2011, 37(1): 74-82(印峰, 王耀南, 魏书宁. 基于类电磁和改进DFP算法的机械手逆运动学计算. 自动化学报, 2011, 37(1): 74-82)
[2]  Astolfi A, Karagiannis D, Ortega R. Nonlinear and Adaptive Control with Applications. Berlin: Springer-Verlag, 2008. 91-114
[3]  Venkatraman A, Ortega R, Sarras I, Van der Schaft A J. Speed observation and position feedback stabilization of partially linearizable mechanical systems. IEEE Transactions on Automatic Control, 2010, 55(5): 1059-1074
[4]  Venkatraman A, Van der Schaft A J. Full-order observer design for a class of port-Hamiltonian systems. Automatica, 2010, 46(3): 555-561
[5]  Wu Ai-Guo, Duan Guang-Ren. Dual Luenberger observer design for linear systems. Control Theory & Applications, 2008, 25(3): 583-586(吴爱国, 段广仁. 线性系统对偶Luenberger 观测器设计. 控制理论与应用, 2008, 25(3): 583-586)
[6]  Aghannan N, Rouchon P. An intrinsic observer for a class of Lagrangian systems. IEEE Transactions on Automatic Control, 2003, 48(6): 936-945
[7]  Xian B, de Queiroz M S, Dawson D M, McIntyre M L. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems. Automatica, 2004, 40(4): 695-700
[8]  Astolfi A, Ortega R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control, 2003, 48(4): 590-606
[9]  Stamnes ? N, Aamo O M, Kaasa G O. A constructive speed observer design for general Euler-Lagrange systems. Automatica, 2011, 47(10): 2233-2238
[10]  Karagiannis D, Astolfi A. Observer design for a class of nonlinear systems using dynamic scaling with application to adaptive control. In: Proceedings of the 47th Conference on Decision and Control. Cancun, Mexico: IEEE, 2008. 2314-2319
[11]  Sassano M, Carnevale D, Astolfi A. Observer design for range and orientation identification. Automatica, 2010, 46(8): 1369-1375
[12]  Liu Yan-Hong, Li Chun-Wen, Wang Yu-Zhen. Decentralized excitation control of multi-machine multi-load power systems using Hamiltonian function method. Acta Automatica Sinica, 2009, 35(7): 919-925 (刘艳红, 李春文, 王玉振. 基于Hamilton函数方法的多机多负荷电力系统分散励磁控制. 自动化学报, 2009, 35(7): 919-925)
[13]  Wang Y Z, Cheng D Z, Hu X M. Problems on time-varying port-controlled Hamiltonian systems: geometric structure and dissipative realization. Automatica, 2005, 41(4): 717-723
[14]  Van der Schaft A J. L2-Gain and Passivity Techniques in Nonlinear Control. Berlin: Springer, 2000
[15]  Spong M W, Vidyasagar M. Robot Dynamics and Control. New York: Wiley, 1989
[16]  Zhao Dong-Ya, Li Shao-Yuan, Gao Feng. Decentralized robust nonlinear control for six-degrees-of-freedom parallel robots. Control Theory & Applications, 2008, 25(5): 867-872 (赵东亚, 李少远, 高峰. 六自由度并联机器人分散鲁棒非线性控制. 控制理论与应用, 2008, 25(5): 867-872)
[17]  Nicosia S, Tomei P. Robot control by using only joint position measurements. IEEE Transactions on Automatic Control, 1990, 35(9): 1058-1061
[18]  Yin Zheng-Nan, Su Jian-Bo, Liu Yan-Tao. Design of disturbance observer with robust performance based on H∞ norm optimization. Acta Automatica Sinica, 2011, 37(3): 331-341 (尹正男, 苏剑波, 刘艳涛. 基于H∞范数优化的干扰观测器的鲁棒设计. 自动化学报, 2011, 37(3): 331-341)
[19]  Bonnabel S, Martin P, Rouchon P. Symmetry-preserving observers. IEEE Transactions on Automatic Control, 2008, 53(11): 2514-2526
[20]  Su Y X, Muller P C, Zhang C H. A simple nonlinear observer for a class of uncertain mechanical systems. IEEE Transactions on Automatic Control, 2007, 52(7): 1340-1345
[21]  Karagiannis D, Carnevale D, Astolfi A. Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Transactions on Automatic Control, 2008, 53(11): 2602-2614
[22]  Astolfi A, Ortega R, Venkatraman A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica, 2010, 46(1): 182-189
[23]  Astolfi A, Ortega R, Venkatraman A. A globally exponentially convergent immersion and invariance speed observer for n degrees of freedom mechanical systems. In: Proceedings of the 48th Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6508-6513
[24]  Karagiannis D, Sassano M, Astolfi A. Dynamic scaling and observer design with application to adaptive control. Automatica, 2009, 45(12): 2883-2889
[25]  Wang Y Z, Li C W, Cheng D Z. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39(8): 1437-1443
[26]  Wang Y Z, Cheng D Z, Ge S S. Approximate dissipative Hamiltonian realization and construction of local Lyapunov functions. Systems and Control Letters, 2007, 56(2): 141-149
[27]  Xi Z R, Cheng D Z, Lu Q, Mei S W. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica, 2002, 38(3): 527-534
[28]  Wang Yu-Zhen. Generalized Hamiltonian Control System Theory—— Realization, Control and Application. Beijing: Science Press, 2007(王玉振. 广义Hamilton控制系统理论——实现, 控制与应用. 北京: 科学出版社, 2007)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133