全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高可信度最小约简属性启发策略

DOI: 10.3724/SP.J.1004.2012.01751, PP. 1751-1756

Keywords: 属性吸收,属性排斥,属性互斥,最小约简,可信度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为提高启发式算法计算最小约简的可信度,基于可辨识矩阵,研究了属性之间存在的吸收、排斥以及互斥等特征,分析其与最小约简的关联,提出了对应的最小约简属性启发策略,建立了各个特征下属性启发策略的可信度计算模型.在此基础上,按照可信度排序,形成了一种综合的高可信度最小约简属性启发策略,并给出了具体的约简算法.理论和实验分析表明,本文策略具有可信度高且可信度可以估计等优点,能有效提升最小约简算法的性能.

References

[1]  Yao Y Y, Zhao Y. Discernibility matrix simplification for constructing attribute reducts. Information Sciences, 2009, 179(7): 867-882
[2]  Qian Y H, Liang J Y, Pedrycz W, Dang C Y. Positive approximation: an accelerator for attribute reduction in rough set theory. Artificial Intelligence, 2010, 174(9-10): 597-618
[3]  Min F, He H P, Qian Y H, Zhu W. Test-cost-sensitive attribute reduction. Information Sciences, 2011, 181(22): 4928-4942
[4]  Liu B X, Li Y, Li L H, Yu Y P. An approximate reduction algorithm based on conditional entropy. Information Computing and Applications, 2010, 106(6): 319-325
[5]  Qian Y H, Liang J Y, Wang F. A new method for measuring the uncertainty in incomplete information systems. Fuzziness and Knowledge-Based Systems, 2009, 17(6): 855-880
[6]  Jensen R, Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge Data Engineering, 2004, 16(12): 1457-1471
[7]  Wang X Y, Yang J, Teng X L, Xia W J, Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters, 2007, 28(4): 459-471
[8]  Zhao Y, Yao Y Y, Luo F. Data analysis based on discernibility and indiscernibility. Information Sciences, 2007, 177(22): 4959-4976
[9]  Xie Y H. A new heuristic attribute reduction method based on boolean matrix. Applied Mechanics and Materials, 2011, 50-51: 605-609
[10]  Xu Yi, Li Long-Shu. Variable precision rough set model based on (α, λ) connection degree tolerance relation. Acta Automatica Sinica, 2011, 37(3): 303-308 (徐怡, 李龙澍. 基于(α, λ)联系度容差关系的变精度粗糙集模型. 自动化学报, 2011, 37(3): 303-308)
[11]  Hu B G, Wang Y. Evaluation criteria based on mutual information for classifications including rejected class. Acta Automatica Sinica, 2008, 34(11): 1396-1403
[12]  Zhou L, Jiang F. A rough set approach to feature selection based on relative decision entropy. Rough Sets and Knowledge Technology, 2011, 6954: 110-119
[13]  Chen Y M, Miao D Q, Wang R Z. A rough set approach to feature selection based on ant colony optimization. Pattern Recognition Letters, 2010, 31(3): 226-233
[14]  Lv Y J, Liu N X. Application of quantum genetic algorithm on finding minimal reduct. In: Proceedings of the 2007 IEEE International Conference on Granular Computing. Washington DC, USA: IEEE, 2007. 728
[15]  Ke L J, Feng Z R, Ren Z G. An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters, 2008, 29(9): 1351-1357

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133