全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分类分析中基于信息论准则的特征选取

DOI: 10.3724/SP.J.1004.2008.00383, PP. 383-392

Keywords: Patternclassification,datamining,featureselection,information-theoreticmeasures

Full-Text   Cite this paper   Add to My Lib

Abstract:

?Featureselectionaimstoreducethedimensionalityofpatternsforclassificatoryanalysisbyselectingthemostinformativeinsteadofirrelevantand/orredundantfeatures.Inthisstudy,twonovelinformation-theoreticmeasuresforfeaturerankingarepresented:oneisanimprovedformulatoestimatetheconditionalmutualinformationbetweenthecandidatefeaturefiandthetargetclassCgiventhesubsetofselectedfeaturesS,i.e.,I(C;fi|S),undertheassumptionthatinformationoffeaturesisdistributeduniformly;theotherisamutualinformation(MI)basedconstructivecriterionthatisabletocapturebothirrelevantandredundantinputfeaturesunderarbitrarydistributionsofinformationoffeatures.Withthesetwomeasures,twonewfeatureselectionalgorithms,calledthequadraticMI-basedfeatureselection(QMIFS)approachandtheMI-basedconstructivecriterion(MICC)approach,respectively,areproposed,inwhichnoparameterslikeβinBattiti'sMIFSand(KwakandChoi)'sMIFS-Umethodsneedtobepreset.Thus,theintractableproblemofhowtochooseanappropriatevalueforβtodothetradeoffbetweentherelevancetothetargetclassesandtheredundancywiththealready-selectedfeaturesisavoidedcompletely.ExperimentalresultsdemonstratethegoodperformancesofQMIFSandMICConbothsyntheticandbenchmarkdatasets.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133