%0 Journal Article %T 分类分析中基于信息论准则的特征选取 %A 黄金杰 %A 吕宁 %A 李双全 %A 蔡云泽 %J 自动化学报 %P 383-392 %D 2008 %R 10.3724/SP.J.1004.2008.00383 %X ?Featureselectionaimstoreducethedimensionalityofpatternsforclassificatoryanalysisbyselectingthemostinformativeinsteadofirrelevantand/orredundantfeatures.Inthisstudy,twonovelinformation-theoreticmeasuresforfeaturerankingarepresented:oneisanimprovedformulatoestimatetheconditionalmutualinformationbetweenthecandidatefeaturefiandthetargetclassCgiventhesubsetofselectedfeaturesS,i.e.,I(C;fi|S),undertheassumptionthatinformationoffeaturesisdistributeduniformly;theotherisamutualinformation(MI)basedconstructivecriterionthatisabletocapturebothirrelevantandredundantinputfeaturesunderarbitrarydistributionsofinformationoffeatures.Withthesetwomeasures,twonewfeatureselectionalgorithms,calledthequadraticMI-basedfeatureselection(QMIFS)approachandtheMI-basedconstructivecriterion(MICC)approach,respectively,areproposed,inwhichnoparameterslikeβinBattiti'sMIFSand(KwakandChoi)'sMIFS-Umethodsneedtobepreset.Thus,theintractableproblemofhowtochooseanappropriatevalueforβtodothetradeoffbetweentherelevancetothetargetclassesandtheredundancywiththealready-selectedfeaturesisavoidedcompletely.ExperimentalresultsdemonstratethegoodperformancesofQMIFSandMICConbothsyntheticandbenchmarkdatasets. %K Patternclassification %K datamining %K featureselection %K information-theoreticmeasures %U http://www.aas.net.cn/CN/abstract/abstract15906.shtml