全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多特征融合的低景深图像前景提取算法

DOI: 10.3724/SP.J.1004.2013.00846, PP. 846-851

Keywords: 前景提取,低景深图像,高阶统计量,权重优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对低景深(Lowdepth-of-field,DOF)图像,提出了一种融合纹理、颜色和高阶统计量(Higher-orderstatistics,HOS)特征的聚焦前景提取方法.首先,根据相似性最大化原则,通过迭代获得纹理和颜色特征的优化权重,实现低景深图像的区域分割.然后,根据优化权重值计算颜色空间上的加权HOS值,并结合区域归属前景的划分策略,实现低景深图像的前景提取.实验结果表明,该算法可以同时取得较高的主观和客观评价效果.

References

[1]  Ko J, Kim M, Kim C. 2D-to-3D stereoscopic conversion: depth-map estimation in a 2D single-view image. In: Proceedings of SPIE. 2007, 6696: 66962A
[2]  Li H L, Ngan K N. Learning to extract focused objects from low DOF images. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(11): 1571-1580
[3]  Chen J Q, Pappas T N, Mojsilovic A, Rogowitz B E. Adaptive perceptual color-texture image segmentation. IEEE Transactions on Image Processing, 2005, 14(10): 1524-1536
[4]  Fan Jiu-Lun, Lei Bo. Two-dimensional extension of minimum error threshold segmentation method for gray-level images. Acta Automatica Sinica, 2009, 35(4): 386-393(范九伦, 雷博. 灰度图像最小误差阈值分割法的二维推广. 自动化学报, 2009, 35(4): 386-393)
[5]  Xu Jian, Ding Xiao-Qing, Wang Sheng-Jin, Wu You-Shou. Background subtraction based on a combination of local texture and color. Acta Automatica Sinica, 2009, 35(9): 1145-1150(徐剑, 丁晓青, 王生进, 吴佑寿. 一种融合局部纹理和颜色信息的背景减除方法. 自动化学报, 2009, 35(9): 1145-1150)
[6]  Ilea D E, Whelan P F. CTex——An adaptive unsupervised segmentation algorithm based on color-texture coherence. IEEE Transactions on Image Processing, 2008, 17(10): 1926-1939
[7]  Kim C. Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Transactions on Image Processing, 2005, 14(10): 1503-1511
[8]  Mu Ya-Dong, Zhou Bing-Feng. A fast object extraction method based on color and texture information. Chinese Journal of Computers, 2009, 32(11): 2252-2259 (穆亚东, 周秉峰. 基于颜色和纹理信息的快速前景提取方法. 计算机学报, 2009, 32(11): 2252-2259)
[9]  Shi L L, Funt B. Quaternion color texture segmentation. Computer Vision and Image Understanding, 2007, 107(1-2): 88-96
[10]  Wei Wei, Shen Xuan-Jing, Qian Qing-Ji. An adaptive thresholding algorithm based on grayscale wave transformation for industrial inspection images. Acta Automatica Sinica, 2011, 37(8): 944-953(魏巍, 申铉京, 千庆姬. 工业检测图像灰度波动变换自适应阈值分割算法. 自动化学报, 2011, 37(8): 944-953)
[11]  Deng Y N, Manjunath B S. Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(8): 800-810
[12]  Allili M S, Ziou D. Globally adaptive region information for automatic color-texture image segmentation. Pattern Recognition Letters, 2007, 28(15): 1946-1956
[13]  Unnikrishnan R, Pantofaru C, Hebert M. Toward objective evaluation of image segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 929-944

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133