Chiba A, Power D T, Rahman M A. Analysis of no-load characteristics of a bearingless induction motor. IEEE Transactions on Industry Applications, 1995, 31(1): 77-83
[2]
Hiromi T, Katou T, Chiba A, Rahman M A, Fukao T. A novel magnetic suspension-force compensation in bearingless induction-motor drive with squirrel-cage rotor. IEEE Transactions on Industry Applications, 2007, 43(1): 66-76
[3]
Yang H, Ma J. Nonlinear control for autonomous underwater glider motion based on inverse system method. Journal of Shanghai Jiaotong University (Science), 2010, 15(6): 713- 718
[4]
Dai X Z, He D, Zhang X, Zhang T. MIMO system invertibility and decoupling control strategies based on ANN α th-order inversion. IEE Proceedings on Control Theory and Applications, 2001, 148(2): 125-136
[5]
Sun Yu-Kun, Ren Yuan, Huang Yong-Hong. Decoupling control between radial force and torque of bearingless switched reluctance motors based on neural network inverse system method. Proceedings of the Chinese Society for Electrical Engineering, 2008, 28(9): 81-85 (孙玉坤, 任元, 黄永红. 磁悬浮开关磁阻电机悬浮力与旋转力的神经网络逆解耦控制. 中国电机工程学报, 2008, 28(9): 81-85)
[6]
Liu Guo-Hai, Jin Peng, Wei Hai-Feng. Neural network inverse control of speed variable system for BLDCM. Transactions of China Electrotechnical Society, 2010, 25(8): 24-30 (刘国海, 金鹏, 魏海峰. 无刷直流电机调速系统神经网络逆控制. 电工技术学报, 2010, 25(8): 24-30)
[7]
Zhou Ping, Chai Tian-You, Chen Tong-Wen. Decoupling internal model control method for operation of industrial process. Acta Automatica Sinica, 2009, 35(10): 1362-1368 (周平, 柴天佑, 陈通文. 工业过程运行的解耦内模控制方法. 自动化学报, 2009, 35(10): 1362-1368)
[8]
Rivals I, Personnaz L. Nonlinear internal model control using neural networks: application to processes with delay and design issues. IEEE Transactions on Neural Networks, 2000, 11(1): 80-90
[9]
Chiba A, Deido T, Fukao T, Rahman M A. An analysis of bearingless AC motors. IEEE Transactions on Energy Conversion, 1994, 9(1): 61-68
[10]
Suzuki T, Chiba A, Rahman M A, Fukao T. An air-gap-flux-oriented vector controller for stable operation of bearingless induction motors. IEEE Transactions on Industry Applications, 2000, 36(4): 1069-1076
[11]
Chiba A, Akamatsu D, Fukao T, Rahman M A. An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives. IEEE Transactions on Industrial Electronics, 2008, 55(2): 852-860
[12]
Deng Zhi-Quan, Wang Xiao-Lin, Zhang Hong-Quan, Li Bing, He Li-Gao, Yan Yang-Guang. The nonlinear control of bearingless induction motors based on the motor rotor flux orientation. Proceedings of the Chinese Society for Electrical Engineering, 2003, 23(3): 89-92 (邓智泉, 王晓琳, 张宏荃, 李冰, 何礼高, 严仰光. 无轴承异步电机的转子磁场定向控制. 中国电机工程学报, 2003, 23(3): 89-92)
[13]
Wang Xiao-Lin, Deng Zhi-Quan. Analysis of flux-oriented strategies of bearingless asynchronous motor. Proceedings of the Chinese Society for Electrical Engineering, 2007, 27(27): 77-82 (王晓琳, 邓智泉. 无轴承异步电机磁场定向控制策略分析. 中国电机工程学报, 2007, 27(27): 77-82)
[14]
Liu X X, Dong L, Fan W J, Sun Yu-xin. Decoupling control of the 5 degree-of-freedom bearingless induction motor based on α-th order inverse system method. In: Proceedings of the 26th Chinese Control Conference. Zhangjiajie, China: IEEE, 2007. 262-266
[15]
Dai X Z, Liu J, Feng C, He D. Neural network α-th order inverse system method for the control of nonlinear continuous systems. IEE Proceedings on Control Theory and Applications, 1998, 145(6): 519-522
[16]
Dai Xian-Zhong, Liu Guo-Hai. Neural network inverse synchronous control of two-motor variable frequency speed-regulating system. Acta Automatica Sinica, 2005, 31(6): 890-900 (戴先中, 刘国海. 两变频调速电机系统的神经网络逆同步控制. 自动化学报, 2005, 31(6): 890-900)
[17]
Morari M, Zafiriou E. Robust Process Control. New Jersey: Prentice-Hall, 1989