全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脑控:基于脑——机接口的人机融合控制

DOI: 10.3724/SP.J.1004.2013.00208, PP. 208-221

Keywords: 脑控,脑--机接口,人机融合控制,脑电信号

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近年来,一类被称之为脑控的新型控制系统发展迅速,这是一种基于脑--机接口(Brain-computerinterface,BCI)的人机融合控制系统,也是一种基于人的意念和思维的控制系统.脑控系统已被成功应用于残疾人的生活辅助、中风病人和损伤肢体的康复训练、操作员状态的实时监控、游戏娱乐和智能家居等广泛的领域.本文在简要介绍了脑控的研究背景、基本原理、系统结构和发展概况的基础上,着重对脑电信号(Electroencephalogram,EEG)模式、控制信号转换算法和应用系统研究等主要问题的研究现状,进行了较为详细的论述和分析,并探讨了进一步研究的方向和思路.最后对脑控的未来发展方向和应用前景进行了分析和展望.

References

[1]  Wolpaw J R, Birbaumer N, Heetderkd W J, McFarland D J, Peckham P H, Schalk G, Donchin E, Quatrono L A, Robinson C J, Vaughan T M. Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 164-173
[2]  Vidal J J. Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 1973, 2: 157-180
[3]  Galambos R, Sheatz G C. An electroencephalography study of classical conditioning. American Journal of Physiology, 1962, 203(1): 173-184
[4]  Wolpaw J R, McFarland D J, Neat G W, Forneris C A. An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 1991, 78(3): 252-259
[5]  Vaughan T M , Heetderks W J, Trejo L J, Rymer W Z, Weinrich M, Moore M M, Kübler A, Dobkin B H, Birbaumer N, Donchin E, Wolpaw E W, Wolpaw J R. Brain-computer interface technology: a review of the second international meeting. IEEE Transactions on Rehabilitation Engineering, 2003, 11(2): 94-109
[6]  Nicolelis M A L. Brain-machine interfaces to restore motor function and probe neural circuits. Nature Reviews Neuroscience, 2003, 4(5): 417-422
[7]  Brookhart J M, Arduini A, Mancia M, Moruzzi G. Slow cortical potentials induced by thalamic stimulation. Bollettino Della Societa Italiana di Biologia Sperimentale, 1957, 33(10-11): 1629-1630
[8]  Sutton S, Braren M, Zubin J, John E R. Evoked-potential correlates of stimulus uncertainty. Science, 1965, 150(3700): 1187-1188
[9]  Bayliss J D, Ballard D H. Single Trial P300 Recognition in a Virtual Environment. New York: University of Rochester, 1998
[10]  Miller A R, Rosenfeld J P, Soskins M, Jhee M. P300 amplitude and topography in an autobiographical oddball paradigm involving simulated amnesia. Journal of Psychophysiology, 2002, 16(1): 1-11
[11]  Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, Palmas G, Beverina F. P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clinical Neurophysiology, 2006, 117(3): 531-537
[12]  Rebsamen B, Burdet E, Guan C, Zhang H H, Teo C L, Zeng Q, Ang M, Laugier C. A brain-controlled wheelchair based on P300 and path guidance. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa, Tuscany, Italy: IEEE, 2006. 1101-1106
[13]  Bell C J, Shenoy P, Chalodhorn R, Rao R P N. Control of a humanoid robot by a noninvasive brain-computer interface in humans. Journal of Neural Engineering, 2008, 5(2): 214-220
[14]  Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalography and Clinical Neurophysiology, 1979, 46(2): 138-146
[15]  Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer interface —— a new communication device for handicapped persons. Journal of Microcomputer Applications, 1993, 16(3): 293-299
[16]  Scherer R, Müller G R, Neuper C, Graimann B, Pfurt-scheller G. An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 979-984
[17]  Leeb R, Pfurtscheller G. Walking through a virtual city by thought. In: Proceedings of the 26th Annual International Conference on IEEE Engineering in Medicine and Biology Society. San Francisco: IEEE, 2004. 4503-4506
[18]  Lalor E C, Kelly S P, Finucane C, Burke R, Smith R, Reilly R B, McDarby G. Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP Journal on Applied Signal Processing, 2005, 19: 3156-3164
[19]  Trejo L J, Rosipal R, Matthews B. Brain-computer interfaces for 1-D and 2-D coursor control: designs using volitional control of the EEG sperctrum or steady-state visual evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 255-229
[20]  Müller-Putz G R, Pfurtscheller G. Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Transactions on Biomedical Engineering, 2008, 55(1): 361-364
[21]  Levine S P, Huggins J E, BeMent S L, Kushwaha R K, Schuh L A, Rohde M M, Passaro E A, Ross D A, Elisevich K V, Smith B J. A direct brain interface based on event-related potentials. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 180-185
[22]  Broetz D, Braun C, Weber C, Soekadar S R, Caria A, Birbaumer N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation and Neural Repair, 2010, 24(7): 674-679
[23]  Bin G Y, Gao X R, Yan Z, Hong B, Gao S K. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of Neural Engineering, 2009, 6(4): 046002
[24]  Zhang Y S, Xu P, Liu T J, Hu J, Zhang R, Yao D Z. Multiple frequencies sequential coding for SSVEP-based brain-computer interface. PLoS One, 2012, 7(3): e29519
[25]  Jin J, Zhang Y, Wang X Y. A novel combination of time phase and EEG frequency components for SSVEP-based BCI. In: Proceedings of the 18th international conference on Neural Information Processing. Berlin, Heidelberg: Springer, 2011. 273-278
[26]  Belitski A, Farquhar J, Desain P. P300 audio-visual speller. Journal of Neural Engineering, 2011, 8(2): 025022
[27]  Martens S M M, Hill N J, Farquhar J, Sch?lkopf B. Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential. Journal of Neural Engineering, 2009, 6(2): 026003
[28]  Hill N J, Farquhar J, Martens S, Biebetamann F, Sch?lkopf B. Effects of stimulus type and of error-correcting code design on BCI speller performance. In: Proceedings of the 2008 Conference of Advances in Neural Information Processing Systems 21. Cambridge, MA, USA: MIT Press, 2009. 665-672
[29]  Fazel-Rezai R. Human error in P300 speller paradigm for brain-computer interface. In: Proceedings of the 29th Annual International Conference on IEEE Engineering in Medicine and Biology Society. Lyon, France: IEEE, 2007. 2516-2519
[30]  Sellers E W, Krusienski D J, McFarland D J, Vaughan T M, Wolpaw J R. A P300 event-related potential brain-computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biological Psychology, 2006, 3(3): 242-252
[31]  Shishkin S L, Ganin I P, Kaplan A Y. Event-related potentials in a moving matrix modification of the P300 brain-computer interface paradigm. Neuroscience Letters, 2011, 496(2): 95-99
[32]  Liu Y, Zhou Z T, Hu D W. Gaze independent brain-computer speller with covert visual search tasks. Clinical Neurophysiology, 2010, 112(6): 1127-1136
[33]  Salvaris M, Sepulveda F. Visual modifications on the P300 speller BCI paradigm. Journal of Neural Engineering, 2009, 6(4): 046011
[34]  Bigdely-Shamlo N, Vankov A, Ramirez R R, Makeig S. Brain activity-based image classification from rapid serial visual presentation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16(5): 432-441
[35]  Wang Xing-Yu. Human-computer integration control based on EEG signal. In: Proceedings of the 23rd Chinese Control Conference. Shanghai: Press of East China University of Science and Technology, 2004. 13-14 (王行愚. 基于脑电信号的人机融合控制. 第23届中国控制会议论文集. 上海: 华东理工大学出版社, 2004. 13-14)
[36]  Jin J, Allison B Z, Sellers E W, Bruner C, Horki P, Wang X Y, Neuper C. Optimized stimulus presentation patterns for an event-related potential EEG-based brain computer interface. Medical and Biological Engineering and Computing, 2011, 49(2): 181-191
[37]  Jin J, Allison B Z, Brunner C, Wang B, Wang X, Zhang J, Neuper C, Pfurtscheller G. P300 Chinese input system based on Bayesian LDA. Biomedizinische Technik/Biomedical Engineering, 2010, 55(1): 5-18
[38]  Allison B Z, Brunner C, Kaiser V, Müller-Putz G, Neuper C, Pfurtscheller G. Toward a hybrid brain-computer interface based on imagined movement and visual attention. Journal of Neural Engineering, 2010, 7(2): 026007
[39]  Horki P, Solis-Escalante T, Neuper C, Müller-Putz G. Combined motor imagery and SSVEP based BCI control of a 2 DoF artificial upper limb. Medical and Biological Engineering and Computing, 2011, 49(5): 567-577
[40]  Hong B, Guo F, Liu T, Gao X R, Gao S K. N200-speller using motion-onset visual response. Clinical Neurophysiology, 2009, 120(9): 1658-1666
[41]  Long J Y, Li Y Q, Wang H T, Yu T Y, Pan J H, Li F. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(5): 720-729
[42]  Jin J, Allison B Z, Kaufmann T, Kübler A, Zhang Y, Wang X Y, Cichocki A. The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLoS ONE, 7(11): e49688
[43]  Bostanov V. BCI competition 2003-Data sets Ib and IIb: feature extraction from event-related brain potentials with the continuous wavelet transform and the T-value scalogram. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1057-1061
[44]  Gao X R, Xu D F, Cheng M, Gao S K. A BCI-based environmental controller for the motion-disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2): 137-140
[45]  Wu Z H, Yao D H. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. Journal of Neural Engineering, 2008, 5(1): 36-43
[46]  Blankertz B, Lemm S, Treder M, Haufe S, Muller K R. Single-trial analysis and classification of ERP components —— A tutorial. NeuroImage, 2011, 56(2): 814-825
[47]  Boye A T, Kristiansen U Q, Billinger M, Nascimento O F, Farina D. Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis. Biomedical Signal Processing and Control, 2008, 3(4): 300-304
[48]  Wang X H. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP: the Fisher criterion. Medical and Biological Engineering and Computing, 2011, 49(9): 997-1001
[49]  Kolda T G, Bader B W. Tensor decompositions and applications. Siam Review, 2009, 51(3): 455-500
[50]  Zhao Q B, Zhang L Q, Cichocki A. Multilinear generalization of common spatial pattern. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, DC, USA: IEEE, 2009. 525-528
[51]  Zhang Y, Zhou G X, Zhao Q B, Onishi A, Jin J, Wang X Y, Cichocki A. Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs. In: Proceedings of the 18th International Conference on Neural Information Processing. Berlin, Heidelberg: Springer, 2011. 287-295
[52]  Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006
[53]  Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B. A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 2007, 4(2): R1-R13.
[54]  Müller-Putz G R, Scherer R, Brauneis C, Pfurtscheller G. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. Journal of Neural Engineering, 2005, 2(4): 123-130
[55]  Krusienski D J, Sellers E W, Cabestaing F, Bayoudh S, McFarland D J, Vaughan T M, Wolpaw J R. A comparison of classification techniques for the P300 speller. Journal of Neural Engineering, 2006, 3(4): 299-305
[56]  Vidaurre C, Kramer N, Blankertz B, Schlogl A. Time domain parameters as a feature for EEG-based brain-computer interfaces. Neural Networks, 2009, 22(9): 1313-1319
[57]  Kaper M, Meinicke P, Grossekathoefer U, Lingner T, Ritter H. BCI competition 2003-Data set IIb: support vector machines for the P300 speller paradigm. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1073-1076
[58]  Jrad N, Congedo M, Phlypo R, Rousseau S, Flamary R, Yger F, Rakotomamonjy A. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces. Journal of Neural Engineering, 2011, 8(5): 056004
[59]  Xu Q, Zhou H, Wang Y J, Huang J. Fuzzy support vector machine for classification of EEG signals using wavelet-based features. Medical Engineering and Physics, 2009, 31(7): 858-865
[60]  Obermaier B, Guger C, Neuper C, Pfurtscheller G. Hidden Markov models for online classification of single trial EEG data. Pattern Recognition Letters, 2001, 22(12): 1299-1309
[61]  Palaniappan R. Brain computer interface design using band powers extracted during mental tasks. In: Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering. Arlington, VA: IEEE, 2005. 321-324
[62]  Balakrishnan D, Puthusserypady S. Multilayer perceptrons for the classification of brain computer interface data. In: Proceedings of the IEEE 31st Annual Northeast on Bioengineering Conference. Hoboken, New Jersey: IEEE, 2005. 118-119
[63]  Lee H, Choi S. PCA + HMM + SVM for EEG pattern classification. In: Proceedings of the 7th International Symposium on Signal Processing and Its Applications. Paris, France: IEEE, 2003. 541-544
[64]  Vidaurre C, Schlogl A, Cabeza R, Scherer R, Pfurtscheller G. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces. IEEE Transactions on Biomedical Engineering, 2007, 54(3): 550-556
[65]  Pfurtscheller G, Solis-Escalante T. Could the beta rebound in the EEG be suitable to realize a "brain-switch"? Clinical Neurophysiology, 2009, 120(1): 24-29
[66]  Zhou Jian-Ying, Wang Fei-Yue, Zeng Da-Jun. Hierarchical dirichlet processes and their applications: a survey. Acta Automatica Sinica, 2011, 37(4): 389-407 (周建英, 王飞跃, 曾大军. 分层Dirichlet 过程及其应用综述. 自动化学报, 2011, 37(4): 389-407)
[67]  Wang Hong-Qiao, Sun Fu-Chun, Cai Yan-Ning, Chen Ning, Ding Lin-Ge. On multiple kernel learning methods. Acta Automatica Sinica, 2010, 36(8): 1037-1050 (汪洪桥, 孙富春, 蔡艳宁, 陈宁, 丁林阁. 多核学习方法. 自动化学报, 2010, 36(8): 1037-1050)
[68]  Wiener N [Author], Hao Ji-Ren [Translator]. Cybernetics; or, Control and Communication in the Animal and the Machine (2nd edition). Beijing: Science Press, 1963 (Wiener N [著], 郝季仁 [译]. 控制论(或关于在动物和机器中控制和通讯的科学). 第2版. 北京: 科学出版社, 1963)
[69]  Wang Xing-Yu. Automatic control: virtuality vs. reality. Acta Automatica Sinica, 2002, 28 (Suppl): 77-84 (王行愚. 在虚拟与现实之间——自动化若干发展方向刍议. 自动化学报, 2002, 28(增刊): 77-84)
[70]  Gazzaniga M S, Ivry R, Mangun G R. Cognitive Neuroscience. New York: W. W. Norton and Company, Inc., 2002
[71]  Walter W G, Cooper R, Aldridge V J, McCallum W C, Winter A L. Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature, 1964, 203(4943): 380-384
[72]  Mason S G, Bashshati A, Fatourechi M, Navarro K F, Birch G E. A comprehensive survey of brain interface technology designs. Annals of Biomedical Engineering, 2007, 35(2): 137-169
[73]  Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature, 1999, 398(6725): 297-298
[74]  Pfurtscheller G, Müller G R, Pfurtscheller J, Gerner H J, Rupp R. "Thought"-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience Letters, 2003, 351(1): 33-36
[75]  Birbaumer N, Elbert T, Canavan A G, Rockstroh B. Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 1990, 70(1): 1-41
[76]  Farwell L A, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 1988, 70(6): 510-523
[77]  Renterghem V D, Wyns B, Devlaminck, D. Adding machine vision to enhance P300 BCI speller. Advanced Materials Research, 2011, 271: 102-107
[78]  Citi L, Poli R, Cinel C, Sepulveda F. P300-based BCI mouse with genetically-optimized analogue control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2008, 16(1): 51-61
[79]  Hoffmann U, Vesin J M, Ebrahimi T, Diserens K. An efficient P300-based brain-computer interface for disabled subjects. Journal of Neuroscience Methods, 2008, 167(1): 115-125
[80]  Pfurtscheller G, Lopes da Silva F H. Event-related EEG/ MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 1999, 110(11): 1842-1857
[81]  Martinez P, Bakardjian H, Cichocki A. Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm. Computational Intelligence and Neuroscience, 2007, 2007: 1-9
[82]  Firman O, Lüth T, Volosyak I, Graser A. Spelling with steady-state visual evoked potentials. In: Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineering. Kohala Coast, Hawaii, USA: IEEE, 2007. 354-357
[83]  Birch G E, Mason S G. Brain-computer interface research at the neil squire foundation. IEEE Transactions on Rehabilitation Engineering, 2000, 8(2): 193-195
[84]  Daly J J, Cheng R, Roqers J, Litinas K, Hrovat K, Dohring M. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. Journal of Neurologic Physical Therapy, 2009, 33(4): 203-211
[85]  Silvoni S, Ramos-Murquialday A, Cavinato M, Volpato C, Cisotto G, Turolla A, Piccione F, Birbaumer N. Brain-computer interface in stroke: a review of progress. Clinical EEG and Neuroscience, 2011, 42(4): 245-252
[86]  Lin Z L, Zhang C S, Wu W, Gao X R. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2610-2614
[87]  Muller-Putz, Scherer R, Neuper C, Pfurtscheller G. Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(1): 30-37
[88]  Gonsalvez C L, Polich J. P300 amplitude is determined by target-to-target interval. Psychophysiology, 2002, 39(3): 388-396
[89]  Woldorff M G. Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 1993, 30(1): 98-119
[90]  Kranczioch C, Debener S, Maye A, Engel A K. Temporal dynamics of access to consciousness in the attentional blink. NeuroImage, 2007, 37(3): 947-955
[91]  Townsend G, LaPallo B K, Boulay C B, Krusienski D J, Frye G E, Hauser C K, Schwartz N E, Vaughan T M, Wolpaw J R, Sellers E W. A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clinical Neurophysiology, 2010, 121(7): 1109-1120
[92]  Jin J, Allison B Z, Sellers E W, Brunner C, Horki P, Wang X Y, Neuper C. An adaptive P300-based control system. Journal of Neural Engineering, 2011, 8(3): 036006
[93]  Takano K, Komatsu T, Hata N, Nakajima Y, Kansaku K. Visual stimuli for the P300 brain-computer interface: a comparison of white/gray and green/blue flicker matrices. Clinical Neurophysiology, 2009, 120(8): 1562-1566
[94]  Gerson A D, Parra L C, Sajda P. Cortically Coupled computer vision for rapid image search. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 174-179
[95]  Treder M S, Schmidt N M, Blankertz B. Gaze-independent brain-computer interfaces based on covert attention and feature attention. Journal of Neural Engineering, 2011, 8(6): 066003
[96]  McFarland D J, Sarnacki W A, Townsend G, Vaughan T, Wolpaw J R. The P300-based brain-computer interface (BCI): effects of stimulus rate. Clinical Neurophysiology, 2010, 122(4): 731-737
[97]  Jin J, Horki P, Brunner C, Wang X Y, Neuper C, Pfurtscheller G. A new P300 stimulus presentation pattern for EEG-based spelling systems. Biomedizinische Technik/Biomedical Engineering, 2010, 55(4): 203-210
[98]  Jin J, Sellers E W, Wang X Y. Targeting an efficient target-to-target interval for P300 speller brain-computer interfaces. Medical and Biological Engineering and Computing, 2012, 50(3): 289-296
[99]  Kaufmann T, Schulz S M, Grünzinger C, Kübler A. Flashing characters with famous faces improves ERP-based brain-computer interface performance. Journal of Neural Engineering, 2011, 8(5): 056016
[100]  Brunner C, Allison B Z, Altst?tter C, Neuper C. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Journal of Neural Engineering, 2011, 8(2): 025010
[101]  Allison B Z, Brunner C, Altst?tter C, Wagner I C, Grissmann S, Neuper C. A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. Journal of Neuroscience Methods, 2012, 209(2): 299-307
[102]  Guo F, Hong B, Gao X R, Gao S K. A brain-computer interface using motion-onset visual evoked potential. Journal of Neural Engineering, 2008, 5(4): 477-485
[103]  Liu T, Goldberg L, Gao S K, Hong B. An online brain-computer interface using non-flashing visual evoked potentials. Journal of Neural Engineering, 2010, 7(3): 036003
[104]  Jin J, Allison B Z, Wang X Y, Neuper C. A combined brain computer interface based on P300 potentials and motion-onset visual evoked potentials. Journal of Neuroscience Methods, 2012, 205(2): 265-276
[105]  Zhang Y, Zhao Q B, Jin J, Wang X Y, Cichocki A. A novel BCI based on ERP components sensitive to configural processing of human faces. Journal of Neural Engineering, 2012, 9(2): 026018
[106]  Vedel-Larsen E, Fugl\o J, Channir F, Thomsen C E, Sorensen H B D. A comparative study between a simplified Kalman filter and sliding window averaging for single trial dynamical estimation of event-related potentials. Computer Methods and Programs in Biomedicine, 2010, 99(3): 252-260
[107]  Sellers E W, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clinical Neurophysiology, 2006, 117(3): 538-548
[108]  Schl?gl A, Lee F, Bischof H, Pfurtscheller G. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. Journal of Neural Engineering, 2005, 2(4): 14-22
[109]  Pires G, Nunes U, Castelo-Branco M. Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis. Journal of Neuroscience Methods, 2011, 195(2): 270-281
[110]  Xu N, Gao X R, Hong B, Miao X B, Gao S K, Yang F S. BCI competition 2003-data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1067-1072
[111]  Cichocki A, Zdunek R, Phan A H, Amari S. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Chichester, UK.: John Wiley and Sons, 2009
[112]  Cichocki A, Washizawa Y, Rutkowski T, Bakardjian H, Phan A H, Choi S, Lee H, Zhao Q B, Zhang L Q, Li Y Q. Noninvasive BCIs: multiway signal-processing array decompositions. IEEE Computer, 2008, 41(10): 34-42
[113]  Washizawa Y, Higashi H, Rutkowski T, Tanaka T, Cichocki A. Tensor based simultaneous feature extraction and sample weighting for EEG classification. In: Proceedings of the 17th International Conference on Neural Information Processing. Berlin, Heidelberg: Springer, 2010. 25-33
[114]  Li J, Zhang L Q, Tao D C, Sun H, Zhao Q B. A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17(2): 107-115
[115]  Duda R O, Hart P E, Stork D G. Pattern Classification (2nd edition). New York: Wiley, 2001
[116]  Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 2001, 89(7): 1123-1134
[117]  Zhang Y, Jin J, Qing X Y, Wang B, Wang X Y. LASSO based stimulus frequency recognition model for SSVEP BCIs. Biomedical Signal Processing and Control, 2012, 7(2): 104-111
[118]  Krusienski D J, Sellers E W, McFarland D J, Vaughan T M, Wolpaw J R. Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 2008, 167(1): 15-21
[119]  Sch?fer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 2005, 4: Article32
[120]  Thulasidas M, Guan C, Wu J K. Robust classification of EEG signal for brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(1): 24-29
[121]  Lemm S, Schafer C, Curio G. BCI competition 2003-Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1077-1080
[122]  Haselsteiner E, Pfurtscheller G. Using time-dependent neural networks for EEG classification. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4): 457-463
[123]  Rakotomamonjy A, Guigue V. BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1147-1154
[124]  Neurosky: BCl technology grounded in laboratory research [Online], available: http://company.neurosky.com/univer-sity/, August 13, 2012
[125]  Emotiv forum thread about the epochs sensors [Online], available: http: //emotiv.com/ forum/ forum10/ topic697, August 13, 2012
[126]  Wei Jing-Han, Luo Yue-Jia. Principle and Technique of Event-Related Brain Potentials. Beijing: Science Press, 2010 (魏景汉, 罗跃嘉. 事件相关电位原理与技术. 北京: 科学出版杜, 2010)
[127]  Jin J, Sellers E W, Zhang Y, Daly I, Wang X Y, Cichocki A. Whether generic model works for rapid ERP-based BCI calibration. Journal of Neuroscience Methods, 2013, 212(1): 94-99
[128]  Fu Yun-Fa, Wang Yue-Chao, Li Hong-Yi, Xu Bao-Lei, Li Yong-Cheng. Direct brain-controlled robot interface technology. Acta Automatica Sinica, 2012, 38(8): 1229-1246 (伏云发, 王越超, 李洪谊, 徐保磊, 李永程. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133