全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于广义模糊双曲模型的自适应动态规划最优控制设计

DOI: 10.3724/SP.J.1004.2013.00142, PP. 142-149

Keywords: 广义模糊双曲模型,最优控制,自适应动态规划,近似最优,自适应控制

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为连续非线性系统提出了一种有效的最优控制设计方法.广义模糊双曲模型(Generalizedfuzzyhyperbolicmodel,GFHM)首次作为逼近器用来估计HJB(Hamilton-Jacobi-Bellman)方程的解(值函数,即它是状态与代价函数之间的映射),然后,利用该近似解获得最优控制.本文方法只需要一个GFHM估计值函数.首先,阐述了对于连线非线性系统最优控制的设计过程;然后,证明了逼近误差是一致最终有界的(Uniformlyultimatelybounded,UUB);最后,一个数值例子验证了本文方法的有效性.另一个例子通过与神经网络自适应动态规划的方法作比较,演示了本文方法的优点.

References

[1]  Murray J J, Cox C J, Lendaris G G, Saeks R. Adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2002, 32(2): 140-153
[2]  Zhang H G, Luo Y H, Liu D R. Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Transactions on Neural Networks, 2009, 20(9): 1490-1503
[3]  Wei Q L, Zhang H G, Cui L L. Data-based optimal control for discrete-time zero-sum games of 2-D systems using adaptive critic designs. Acta Automatica Sinica, 2009, 35(6): 682-692
[4]  Wei Q L, Liu D R. An iterative 2-optimal control scheme for a class of discrete-time nonlinear systems with unfixed initial state. Neural Networks, 2012, 32: 236-244
[5]  Kirk D E. Optimal Control Theory: An Introduction. New York: Dover, Inc., 2004
[6]  Vrabie D, Pastravanu O, Abu-Khalaf M, Lewis F L. Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica, 2009, 45(2): 477-484
[7]  Vamvoudakis K G, Lewis F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 2010, 46(5): 878-888
[8]  Zhang H G, Cui L L, Zhang X, Luo Y H. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Transactions on Neural Networks, 2011, 22(12): 2226-2236
[9]  Lewis F L. Optimal Control. New York: John Wiley and Sons, 1986
[10]  Al-Tamimi A, Lewis F L, Abu-Khalaf M. Model-free Q-learning designs for linear discrete-time zero-sum games with application to H∞ control. Automatica, 2007, 43(3): 473-481
[11]  Beard R W, Saridis G N, Wen J T. Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation. Journal of Optimization Theory and Applications, 1998, 96(3): 589-626
[12]  Wang D, Liu D R, Wei Q L. Finite-horizon neuro-optimal tracking control for a class of discrete-time nonlinear systems using adaptive dynamic programming approach. Neurocomputing, 2012, 78(1): 14-22
[13]  Finlayson B A. The Method of Weighted Residuals and Variational Principles. New York: Academic Press, 1972
[14]  Kim Y H, Lewis F L, Dawson D M. Hamilton-Jacobi-Bellman optimal design of functional link neural network controller for robot manipulators. In: Proceedings of the 36th IEEE Conference on Decision and Control. San Diego, California USA, 1997, 2: 1038-1043
[15]  Hagan M T, Demuth H B, Beale M H. Neural Network Design. Boston, MA: PWS Publishing, 1996
[16]  Khalil H K. Nonlinear Systems, Third edition. New Jersey: Prentice Hall, 2001
[17]  Prokhorov D V, Wunsch D C. Adaptive critic designs. IEEE Transactions on Neural Networks, 1997, 8(5): 997-1007
[18]  Wang F Y, Jin N, Liu D R, Wei Q L. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with bound. IEEE Transactions on Neural Networks, 2011, 22(1): 24-36
[19]  Dierks T, Thumati B T, Jagannathan S. Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence. Neural Network, 2009, 22(5-6): 851-860
[20]  Zhang H G, Cui L L, Luo Y H. Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network ADP. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, doi: 10.1109/TSMCB.2012.2203336
[21]  Wei Qing-Lai, Zhang Hua-Guang, Liu De-Rong, Zhao Yan. An optimal control scheme for a class of discrete-time nonlinear systems with time delays using adaptive dynamic programming. Acta Automatica Sinica, 2010, 36(1): 121-129(魏庆来, 张化光, 刘德荣, 赵琰. 基于自适应动态规划的一类带有时滞的离散时间非线性系统的最优控制策略.自动化学报, 2010, 36(1): 121-129)
[22]  Si J, Barto A G, Powell W B, Wunsch D. Handbook of Learning and Approximate Dynamic Programming. New York: Wiley, 2004
[23]  Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, 9(3): 32-50
[24]  Vrabie D, Lewis F. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Networks, 2009, 22(3): 237-246
[25]  Haddad W M, Chellaboina V. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. United Kingdom: Princeton University Press, 2008
[26]  Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge: MIT Press, 1998
[27]  Beard R W. Improving the Closed-Loop Performance of Nonlinear Systems [Ph.D. dissertation], Rensselaer Polytechnic Institute, Troy, 1995
[28]  Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica, 2005, 41(5): 779-791
[29]  Al-Tamimi A, Lewis F L, Abu-Khalaf M. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(4): 943-949
[30]  Zhang H G, Quan Y B. Modeling identification and control of a class of nonlinear system. IEEE Transactions on Fuzzy Systems, 2001, 9(2): 349-354
[31]  Wang L X, Mendel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 1992, 3(5): 807-814
[32]  Lewis F W, Jagannathan S, Yesildirek A. Neural Network Control of Robot Manipulators and Nonlinear Systems. USA: Taylor and Francis, Inc., 1998
[33]  Abdollahi F, Talebi H A, Patel R V. A stable neural network observer with application to flexible-joint manipulators. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'02). Singapore: IEEE, 2002, 4: 1910-1914

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133