全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于随机采样的多量测目标跟踪算法

DOI: 10.3724/SP.J.1004.2013.00168, PP. 168-178

Keywords: 多量测目标跟踪,信息融合,形状参数,多量测,马尔科夫链采样

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在多目标跟踪领域,传统算法假设目标是点源辐射体,至多产生一个量测点,随着现代传感器技术的发展,可以获得一个目标的多个量测.本文研究当目标具有一定刚体几何形状并产生多量测的问题,这类目标称为多量测目标.首先,通过建立目标形状的刚体参数模型,提出采用参数马尔科夫链采样的方法,估计目标的形状参数.其次,采用等效量测方法,获得目标形心点的运动状态.针对目标个数未知情况,在形状目标量测满足泊松分布假设条件下,采用泊松强度比方法获得目标的个数估计.本文定义了目标类型概率并给出了目标类型概率的递推算法.最后,通过三个具有不同形状和分布的多量测目标在二维平面的匀速(Constantvelocity,CV)运动进行验证说明,实验表明:所给方法在目标运动状态估计方面能够获得比较高的估计精度,目标形状估计能够比较稳定精确地估计目标形状的变化.此外,500次蒙特卡洛(MonteCarlo,MC)仿真实验表明,多量测目标的跟踪丢失率约为1.4%.

References

[1]  Bar-Shalom Y. Tracking methods in a multitarget environment. IEEE Transactions on Automatic Control, 1978, 23(4): 618-626
[2]  Koch W, van Keuk G. Multiple hypothesis track maintenance with possibly unresolved measurements. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 883-892
[3]  Feldmann M, Fr?nken D, Koch W. Tracking of extended objects and group targets using random matrices. IEEE Transactions on Signal Processing, 2011, 59(4): 1409-1420
[4]  Baum M, Hanebeck U D. Shape tracking of extended objects and group targets with star-convex RHMs. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, Illinois, USA: IEEE, 2011. 338-345
[5]  Baum M, Noack B, Hanebeck U D. Extended object and group tracking with elliptic random hypersurface models. In: Proceedings of the 13th International Conference on Information Fusion. Edinburg, UK: IEEE, 2010. 1-8
[6]  Mahler R. PHD filters for nonstandard target I: extended targets. In: Proceedings of the 12th International Conference on Information Fusion. Seattle, WA, USA: ISIF, 2009. 915-921
[7]  Lundquist C, Granstr?m K, Orguner U. Estimating the shape of targets with a PHD filter. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, Illinois, USA: IEEE, 2011. 49-56
[8]  Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Tracking partly resolvable group targets using SMC-PHDF. Acta Automatica Sinica, 2010, 36(5): 731-741 (连峰, 韩崇昭, 刘伟峰, 元向辉. 基于SMC-PHDF 的部分可分辨的群目标跟踪算法. 自动化学报, 2010, 36(5): 731-741)
[9]  Joo S W, Chellpa R. A multiple-hypothesis approach for multiobject visual tracking. IEEE Transactions on Image Processing, 2007, 16(11): 2849-2854
[10]  Gordon N J, Samlond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceeding Control Theory and Application, 1993, 140(2): 107-113
[11]  Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819
[12]  Liu Wei-Feng. Research on Multitarget Tracking Algorithm Based on Random Finite Sets and Finite Mixture Models [Ph.D. dissertation], Xi'an Jiaotong University, China, 2009 (刘伟峰. 基于随机有限集和有限混合模型的多目标跟踪算法研究 [博士学位论文], 西安交通大学, 中国, 2009)
[13]  Hastings W K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57(1): 97-109
[14]  Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854
[15]  Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059
[16]  Richter E, Obst M, Noll M, Wanielik G. Tracking multiple extended objects — a Markov chain Monte Carlo approach. In: Proceedings of the 14th International Conference on Information Fusion. Chicago. Illinois, USA: IEEE, 2011. 314-321
[17]  Baum M, Hanebeck U D. Random hypersurface models for extended object tracking. In: Proceedings of the 9th IEEE International Symposium on Signal Processing and Information Technology. Ajman, United Arab Emirates: IEEE, 2009. 178-183
[18]  Orguner U. Lundquist C, Granstr?m K. Extended target tracking with a cardinalized probability hypothesis density filter. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, Illinois, USA: IEEE, 2011. 65-72
[19]  Rasmussen C, Hager G D. Probabilistic data association methods for tracking complex visual objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 560-576
[20]  Fleuret F, Berclaz J, Lengagne R, Fua P. Multicamera people tracking with a probabilistic occupancy map. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 267-282
[21]  Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association for multi-target tracking. IEEE Transactions on Automatic Control, 2009, 54(3): 481-497
[22]  Liu W F, Han C Z. Multitarget tracking algorithm based on finite mixture models and equivalent measurement. In: Proceedings of the 11th International Conference on Information Fusion. Cologne, Germany: IEEE, 2008. 1544-1551
[23]  Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 1995, 82(4): 711-732

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133