全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于用户搜索行为的query-doc关联挖掘

DOI: 10.3724/SP.J.1004.2014.01654, PP. 1654-1666

Keywords: 关联关系,搜索行为,马尔可夫随机游走,查询推荐,检索结果聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

?query和doc之间的关联关系是搜索引擎期望获取的一类有价值的信息.query和doc间准确的关联分析不仅可以帮助搜索结果排序,也在query和doc之间的桥接中起到重要作用,以实现相关query和doc之间的信息传递,有利于更深入的query理解和doc理解,并在此基础上开展相关应用.本文提出了一种基于用户搜索行为的query和doc关联关系挖掘算法,该方法首先对用户搜索点击日志中的数据进行整理与分析,构建query与doc间的二部图,再通过采用马尔可夫随机游走模型对二部图数据进行建模,挖掘二部图中的点击数据和session数据,最终挖掘出点击日志中用户没有点击到的doc数据,从而预测出query和doc间的隐含关联关系,同时也可以利用该算法得到query和query潜在的关联关系.基于以上理论基础,我们实现了一套完整的日志挖掘系统,通过大量的实验对比,该系统在各方面均取得了优异的表现,其中对检索结果相关性的性能提升可以达到71.23%,这充分表明,本文所提出的理论和算法能够很好地解决query和doc之间的隐含关系挖掘问题,为提高搜索结果的召回率、实现查询推荐和检索结果聚类奠定了良好的前提基础.

References

[1]  Bhatia S, Majumdar D, Mitra P. Query suggestions in the absence of query logs. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China: ACM, 2011. 795-804
[2]  Peters S, Jacob Y, Denoyer L, Gallinari P. Iterative multi-label multi-relational classification algorithm for complex social networks. Social Network Analysis and Mining, 2012, 2(1): 17-29
[3]  Surdeanu M, Tibshirani J, Nallapati R, Manning C D, Center A I. Multi-instance multi-label learning for relation extraction. In: Proceedings of the 2012 Conference on Empirical Methods in Natural Language Processing and Natural Language Learning (EMNLP-CoNLL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 455-465
[4]  Liu Y, Miao J, Zhang M, Ma S, Ru L. How do users describe their information need: query recommendation based on snippet click model. Expert Systems with Applications, 2011, 38(11): 13847-13856
[5]  Li Wen-Qing, Sun Xin, Zhang Chang-You, Feng Ye. A semantic similarity measure between ontological concepts. Acta Automatica Sinica, 2012, 38(2): 229-235 (李文清, 孙新, 张常有, 冯烨. 一种本体概念的语义相似度计算方法. 自动化学报, 2012, 38(2): 229-235)
[6]  Wang Li, Wu Cheng-Dong, Chen Dong-Yue, Li Meng-Xin, Chen Li. Exploring linear homeomorphic clusters on nonlinear manifold. Acta Automatica Sinica, 2012, 38(8): 1308-1320 (王力, 吴成东, 陈东岳, 李孟歆, 陈莉. 非线性流形上的线性结构聚类挖掘. 自动化学报, 2012, 38(8): 1308-1320)
[7]  Xiang B, Jiang D, Pei J, Sun X, Chen E H, Li H. Context-aware ranking in web search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. Geneva, Switzerland Cochairs: ACM, 2010. 451-458
[8]  Chang L J, Xu Y J, Qin L. Context-sensitive document ranking. Journal of Computer Science and Technology, 2010, 25(3): 444-457
[9]  Zhuang Z M, Cucerzan S. Exploiting semantic query context to improve search ranking. In: Proceedings of the 2008 IEEE International Conference on Semantic Computing. Santa Clara, California, USA: IEEE, 2008. 50-57
[10]  Riedel S, Yao L, Mccallum A. Modeling relations and their mentions without labeled text. Machine Learning and Knowledge Discovery in Databases, 2010, 6323(3): 148-163
[11]  Li X. Understanding the semantic structure of noun phrase queries. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics Association for Computational Linguistics. Uppsala, Sweden: ACL, 2010. 1337-1345
[12]  Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2 Association for Computational Linguistics. Suntec, Singapore: ACL, 2009. 1003-1011
[13]  Anagnostopoulos A, Becchetti L, Castillo C, Gionis A. An optimization framework for query recommendation. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2010. 161-170
[14]  Yan X H, Guo J F, Cheng X Q. Context-aware query recommendation by learning high-order relation in query logs. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Glasgow, UK: ACM, 2011. 2073-2076
[15]  Zhou Lin, Ping Xi-Jian, Xu Sen, Zhang Tao. Cluster ensemble based on spectral clustering. Acta Automatica Sinica, 2012, 38(8): 1335-1342 (周林, 平西建, 徐森, 张涛. 基于谱聚类的聚类集成算法. 自动化学报, 2012, 38(8): 1335-1342)
[16]  Yang Yi, Han De-Qiang, Han Chong-Zhao. Evidence combination based on multi-criteria rank-level fusion. Acta Automatica Sinica, 2012, 38(5): 823-831 (杨艺, 韩德强, 韩崇昭. 基于多准则排序融合的证据组合方法. 自动化学报, 2012, 38(5): 823-831)
[17]  Chen L J, Papakonstantinou Y. Context-sensitive ranking for document retrieval. In: Proceedings of the 2011 International Conference on Management of Data. Athens, Greece: ACM, 2011. 757-768
[18]  Nguyen T V T, Moschitti A. End-to-end relation extraction using distant supervision from external semantic repositories. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA: ACL, 2011: 277-282

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133