全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线性和非线性动态异构多自主体系统的有限时间一致性

DOI: 10.3724/SP.J.1004.2014.02618, PP. 2618-2624

Keywords: 有限时间一致性,异构多自主体系统,线性和非线性动态

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究了由线性和非线性动态自主体组成的异构多自主体系统的有限时间一致性问题.针对该异构系统提出了非线性的一致性协议,并分别给出了无领航者和有领航者情形下异构系统在有限时间内实现一致性的充分条件.所得结果还推广到具有有向通信拓扑且满足细致平衡条件的多自主体系统情形.最后,给出一些仿真结果来验证所得结论的正确性和有效性.

References

[1]  You Ke-You, Xie Li-Hua. Survey of recent progress in networked control systems. Acta Automatica Sinica, 2013, 39(2): 101-118 (in Chinese)
[2]  Sun Wei, Dou Li-Hua, Fang Hao. Cooperative pollution supervising and neutralization with multi-actuator-sensor network. Acta Automatica Sinica, 2011, 37(1): 107-112
[3]  Nosrati S, Shafiee M. Time-delay dependent stability robustness of small-world protocols for fast distributed consensus seeking. In: Proceedings of the 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops. Limassol, Cyprus: IEEE, 2007. 1-9
[4]  Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, 2010, 55(4): 950-955
[5]  Tanner H G, Christodoulakis D. Decentralized cooperative control of heterogeneous vehicle groups. Robotics and Autonomous Systems, 2007, 55(11): 811-823
[6]  Zheng Y S, Wang L. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Systems & Control Letters, 2012, 61(8): 871-878
[7]  Godsil C, Royal G F. Algebraic Graph Theory. New York: Springer-Verlag, 2001
[8]  Wang X L, Hong Y G. Distributed finite-time χ-consensus algorithms for multi-agent systems with variable coupling topology. Journal of Systems Science and Complexity, 2010, 23(2): 209-218
[9]  Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Systems & Control Letters, 1992, 19(6): 467-473
[10]  Zheng Y S, Wang L. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Systems & Control Letters, 2012, 61(8): 871-878
[11]  Li S H, Du H B, Lin X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica, 2011, 47(8): 1706-1712
[12]  Luo Xiao-Yuan, Shao Shi-Kai, Guan Xin-Ping, Zhao Yuan-Jie. Dynamic generation and control of optimally persistent formation for multi-agent systems. Acta Automatica Sinica, 2012, 38(9): 1431-1438 (in Chinese)
[13]  Ren W, Atkins E. Distributed multi-vehicle coordinated control via local information exchange. International Journal of Robust and Nonlinear Control, 2007, 17(10-11): 1002-1033 (in Chinese)
[14]  Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
[15]  Zhou J, Wang Q. Convergence speed in distributed consensus over dynamically switching random networks. Automatica, 2009, 45(6): 1455-1461
[16]  Chen G, Lewis F L, Xie L. Finite-time distributed consensus via binary control protocols. Automatica, 2011, 47(9): 1962-1968
[17]  Liu C, Liu F. Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica, 2011, 47(9): 2130-2133
[18]  Zhu Y K, Guan X P, Luo X Y. Finite-time consensus of heterogeneous multi-agent systems. Chinese Physics B, 2013, 22(3): 038901
[19]  Jiang F C, Wang L. Finite-time information consensus for multi-agent systems with fixed and switching topologies. Physica D: Nonlinear Phenomena, 2009, 238(16): 1550-1560
[20]  Hong Y G. Finite-time stabilization and stabilizability of a class of controllable systems. Systems & Control Letters, 2002, 46(4): 231-236
[21]  Hua C C, Liu P. A new coordinated slave torque feedback control algorithm for network-based teleoperation systems. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 764-774

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133