全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模型误差变化率有界的空间连接系统鲁棒性能分析

DOI: 10.3724/SP.J.1004.2014.02098, PP. 2098-2107

Keywords: 空间连接系统,鲁棒性能,模型误差,非因果性,结构不确定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对具有时空不变名义模型的空间连接系统,讨论其存在有界、线性、时空变化和有结构性约束的模型误差时,取得鲁棒性能的条件.对于时间轴和空间轴,分别定义了算子的时间变化率和空间变化率,给出了系统取得鲁棒性能时该变化率的上界和下界.研究表明,对于时间轴和空间轴上变化率满足一定条件、具有结构约束的有界模型误差,系统取得鲁棒性能的充分必要条件是存在频率域上的缩放矩阵(D标度),使得系统名义模型范数小于1.

References

[1]  Xi Yu-Geng. Large-scale systems control and complex networks-exploration and thinking. Acta Automatica Sinica, 2013, 39(11): 1758-1768(席裕庚. 大系统控制论与复杂网络——-探索与思考. 自动化学报, 2013, 39(11): 1758-1768)
[2]  Chichka D F, Speyer J L. Solar-powered, formation-enhanced aerial vehicle system for sustained endurance. In: Proceedings of the 1998 American Control Conferences. Philadelphia, PA: AACC, 1998. 684-688
[3]  Wang Pei, Lv Jin-Hu. Control of genetic regulatory networks: opportunities and challenges. Acta Automatica Sinica, 2013, 39(12): 1969-1979(王沛, 吕金虎. 基因调控网络的控制: 机遇与挑战. 自动化学报, 2013, 39(12): 1969-1979)
[4]  D'Andrea R, Dullerud G E. Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control, 2003, 48(9): 1478-1495
[5]  Bamieh B, Paganini F, Dahleh M A. Distributed control of spatially invariant systems. IEEE Transactions on Automatic Control, 2002, 47(7): 1091-1107
[6]  Chandra R, D'Andrea R. A scaled small gain theorem with applications to spatially interconnected systems. IEEE Transactions on Automatic Control, 2006, 51(3): 465-469
[7]  Poolla K, Tikku A. Robust performance against time-varying structured perturbations. IEEE Transactions on Automatic Control, 1995, 40(9): 1589-1602
[8]  Raza H, Ioannou P. Vehicle following control design for automated highway systems. IEEE Control Systems, 1996, 16(6): 43-60
[9]  Shaw G B, Miller D W, Hastings D E. The Generalized Information Network Analysis Methodology for Distributed Satellite Systems [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 1998
[10]  Zhou T. On the stability of spatially distributed systems. IEEE Transactions on Automatic Control, 2008, 53(10): 2385-2391
[11]  Gorinevsky D, Stein G. Structured uncertainty analysis of robust stability for multidimensional array systems. IEEE Transactions on Automatic Control, 2003, 48(9): 1557-1568
[12]  Sarwar A, Voulgaris P G, Salapaka S M. On l∞ and l2 robustness of spatially invariant systems. International Journal of Robust and Nonlinear Control, 2010, 20(6): 607-622
[13]  Koroglu H, Scherer C W. Robust performance analysis for structured linear time-varying perturbations with bounded rates-of-variation. IEEE Transactions on Automatic Control, 2007, 52(2): 197-210
[14]  Wolodkin G, Poolla K. Spectral power distribution using time-varying operators. In: Proceedings of the 1994 American Control Conferences. Baltimore, MD: AACC, 1994. 3147 -3151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133