全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机器海豚多模态游动CPG控制

DOI: 10.3724/SP.J.1004.2014.01933, PP. 1933-1941

Keywords: 仿生机器人,机器海豚,运动控制,中枢模式发生器

Full-Text   Cite this paper   Add to My Lib

Abstract:

?受自然界海豚超凡的水中游动技能启发,机器海豚在军事和民用上具有潜在的广泛应用前景,因此受到研究人员的极大关注.然而,要实现机器海豚在水中自如地机动游动,必须为机器海豚设计一个具有丰富游动技能的多模态控制器.为此,通过振荡器建模与分析、中枢模式发生器(Centralpatterngeneration,CPG)与机器海豚关节配对、CPG单元间耦合等环节建立了机器海豚的链式弱耦合CPG运动控制模型,提出一种基于CPG激发产生多模态振荡波形控制机器海豚运动的方法.详细阐述了机器海豚样机研制、控制器设计、运动控制实现与实验测试等内容.向前直游、转弯、浮潜等游动实验结果验证了所提出的机器海豚CPG运动控制方法的有效性和实用性.

References

[1]  Wand L, Yu J, Hu Y H, Fan R F, Huo J Y, Xie G M. Mechanism design and motion control of robotic dolphin. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 294-301 (王龙, 喻俊志, 胡永辉, 范瑞峰, 霍继延, 谢广明. 机器海豚的机构设计与运动控制. 北京大学学报: 自然科学版, 2006, 42(3): 294-301)
[2]  Nakashima M, Ono K. Development of a two-joint dolphin robot. Neurotechnology for Biomimetic Robots. Cambridge, MA: MIT Press, 2002.
[3]  Dogangil G, Ozcicek E, Kuzucu A. Modeling, simulation, and development of a robotic dolphin prototype. In: Proceedings of IEEE International Conference on Mechatronics and Automation. Canada: IEEE, 2005. 952-957
[4]  Yu J Z, Hu Y H, Fan R F, Wang L, Huo J Y. Mechanical design and motion control of a biomimetic robotic dolphin. Advanced Robotics, 2007, 21(3-4): 499-513
[5]  Yu J Z, Hu Y H, Huo J Y, Wang L. Dolphin-like propulsive mechanism based on an adjustable scotch yoke. Mechanism and Machine Theory, 2009, 44(3): 603-614
[6]  Jiang Shi-Ping, Guo Zhi, Sun Hui-Dong. Modeling and simulation for caudal fin motion of dolphin robot. Journal of Yanshan University, 2008, 32(4): 311-315 (姜世平, 郭志, 孙晖东. 机器海豚尾鳍运动模型的建立及仿真. 燕山大学学报, 2008, 32(4): 311-315)
[7]  Guo Zhi, Jiang Shi-Ping, Sun Hui-Dong. Modeling and simulation for kinematics and dynamics of dolphin robot. Ship Science and Technology, 2009, 31(1): 142-145 (郭志, 姜世平, 孙晖东. 机器海豚的运动学及动力学建模和仿真. 舰船科学技术, 2009, 31(1): 142-145)
[8]  Shen Fei, Cao Zhi-Qiang, Xu De, Zhou Chao. A dynamic model of robotic dolphin based on Kane method and its speed optimization method. Acta Automatica Sinica, 2012, 38(8): 1247-1256 (沈飞, 曹志强, 徐德, 周超. 基于Kane方法的机器海豚动力学建模及速度优化方法. 自动化学报, 2012, 38(8): 1247-1256)
[9]  Shen Fei, Cao Zhi-Qiang, Xu De, Zhou Chao. Propulsive control for robotic dolphin based on fluke's attack angle. Journal of Hua Zhong University of Science and Technology (Natural Science Edition), 2011, 39(Sup. II): 302-305 (沈飞, 曹志强, 徐德, 周超. 基于尾鳍攻角的机器海豚推进控制研究. 华中科技大学学报(自然科学版), 2011, 39(Sup. II): 302-305)
[10]  Wu Zheng-Xing, Yu Jun-Zhi, Su Zong-Shuai, Tan Min. Control and implementation of s-start for a multijoint biomimetic robotic fish. Acta Automatica Sinica, 2013, 39(11): 1914-1922 (吴正兴, 喻俊志, 苏宗帅, 谭民. 仿生机器鱼S形起动的控制与实现. 自动化学报, 2013, 39(11): 1914-1922)
[11]  Zhou Chao, Cao Zhi-Qiang, Wang Shuo, Tan Min. Study on the pitching and depth control of biomimetic robot fish. Acta Automatica Sinica, 2008, 34(9): 1215-1218 (周超, 曹志强, 王硕, 谭民. 仿生机器鱼俯仰与深度控制方法. 自动化学报, 2008, 34(9): 1215-1218)
[12]  Zhou Chao, Cao Zhi-Qiang, Wang Shuo, Dong Xiang, Tan Min. Swimming backward of a biomimetic carangiform robot fish. Acta Automatica Sinica, 2008, 34(8): 1024-1027 (周超, 曹志强, 王硕, 董翔, 谭民. 仿鲹科机器鱼的倒退游动控制. 自动化学报, 2008, 34(8): 1024-1027)
[13]  Crespi A, Badertscher A, Guignard A, Ijspeert A J. AmphiBot I: an amphibious snake-like robot. Robotics and Autonomous Systems, 2005, 50(4): 163-175
[14]  Arena P. A mechatronic lamprey controlled by analog circuits. In: Proceedings of the 9th IEEE Mediterranean Conference on Control and Automation. Dubrovnik, Croatia: IEEE, 2001
[15]  Stefanini C, Orlandi G, Menciassi A, Ravier Y, La Spina G, Grillner S, Dario P. A mechanism for biomimetic actuation in lamprey-like robots. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa: IEEE, 2006. 579-584
[16]  Wilbur C, Vorus W, Cao Y S, Currie S. A Lamprey-based Undulatory Vehicle. Cambridge London: Bradford/MIT Press, 2002
[17]  Lachat D, Crespi A, Ijspeert A J. BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa: IEEE, 2006. 643-648
[18]  Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
[19]  Ijspeert A J, Crespi A, Ryczko D, Cabelguen J M. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315(5817): 1416-1420
[20]  Yu J Z, Wang M, Tan M, Zhang J W. Three-dimensional swimming. IEEE Robotics and Automation Magazine, 2011, 18(4): 47-58
[21]  Yu J Z, Su Z S, Wang M, Tan M, Zhang J W. Control of yaw and pitch maneuvers of a multi-link dolphin robot. IEEE Transactions on Robotics, 2012, 28(2): 318-329
[22]  Wang M, Yu J Z, Tan M, Zhang J W. Design and implementation of a novel CPG-based locomotion controller for robotic dolphin. In: Proceedings of the 8m th World Congress on Intelligent Control and Automation. Ji'nan China: IEEE, 2010. 1611-1616
[23]  Wang M, Yu J Z, Tan M. Parameter design for a central pattern generator based locomotion controller. In: Proceedings of the 1st International Conference on Intelligent Robotics and Applications. Berlin Heidelberg: Springer, 2008. 352-361
[24]  Yu J Z, Wang M, Su Z S, Tan M, Zhang J W. Dynamic modeling of a CPG-governed multi-joint robotic fish. Advanced Robotics, 2013, 27(4): 275-285

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133