全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

提高测量可靠性的多传感器数据融合有偏估计方法

DOI: 10.3724/SP.J.1004.2014.01843, PP. 1843-1852

Keywords: 测量,可靠性,数据融合,有偏估计,岭估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为了提高测量数据可靠性,多传感器数据融合在过程控制领域得到了广泛应用.本文基于有偏估计能够减小最小二乘无偏估计方差的思想,提出采用多传感器有偏估计数据融合改善测量数据可靠性的方法.首先,基于岭估计提出了有偏测量过程,并给出了测量数据可靠性定量表示方法,同时证明了有偏测量可靠度优于无偏测量可靠度.其次,提出了多传感器有偏估计数据融合方法,证明了现有集中式与分布式无偏估计数据融合之间的等价性.最后,证明了多传感器有偏估计数据融合收敛于无偏估计数据融合.实例应用验证了方法的有效性.

References

[1]  Song Hai-Hua, Wang Xiu-Li, Li Hong-Hai. Measurement and prediction of interfacial area on distillation tray. CIESC Journal, 2003, 54(8): 1112-1117 (宋海华, 王秀丽, 李红海. 精馏塔板上气液相界面积的测量与预测. 化工学报, 2003, 54(8): 1112-1117)
[2]  Viera A J, Garrett J M. Understanding inter-observer agreement: the kappa statistic. Family Medicine, 2005, 37(5): 360-363
[3]  Ge Quan-Bo, Li Wen-Bin, Sun Ruo-Yu, Xu Zi. Centralized fusion algorithms based on EKF for multisensor. Acta Automatica Sinca, 2013, 39(6): 816-825 (葛泉波, 李文斌, 孙若愚, 徐姿. 基于EKF的集中式融合估计研究. 自动化学报, 2013, 39(6): 816-825)
[4]  Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3): 517-525
[5]  Wen C B, Cai Y Z, Wen C L, Xu X M. Optimal sequential Kalman filtering with cross-correlated measurement noises. Aerospace Science and Technology, 2013, 26(1): 153-159
[6]  Feng J X, Wang Z D, Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises. Information Fusion, 2013, 14(1): 78-86
[7]  Sun S L, Deng Z L. Multi-sensor optimal information fusion Kalman filter. Automatica, 2004, 40(6): 1017-1023
[8]  Ran C J, Deng Z L. Self-tuning weighted measurement fusion Kalman filtering algorithm. Computational Statistics & Data Analysis, 2012, 56(6): 2112-2128
[9]  Gan Q, Harris C J. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 273-279
[10]  James W, Stein C. Estimation with quadratic loss. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. 1961, 1: 311-319
[11]  Liu K. Using Liu-type estimator to combat collinearity. Communications in Statistics Theory and Methods, 2003, 32(5): 1009-1020
[12]  Zhen Zi-Yang, Wang Zhi-Sheng, Wang Dao-Bo. Predictive control based on information fusion optimal estimation for nonlinear discrete system. Acta Automatica Sinca, 2008, 34(3): 331-336 (甄子洋, 王志胜, 王道波. 基于信息融合最优估计的非线性离散系统预测控制. 自动化学报, 2008, 34(3): 331-336)
[13]  Luo Ben-Cheng, Yuan Kui, Chen Jin-Long, Zhu Hai-Bin. Uncertainty analysis based dynamic multi-sensor data fusion. Acta Automatica Sinica, 2004, 30(3): 407-415 (罗本成, 原魁, 陈晋龙, 朱海滨. 一种基于不确定分析的多传感器信息动态融合方法. 自动化学报, 2004, 30(3): 407-415)
[14]  Zhang Zheng-Jiang, Zeng Guo-Qiang, Shao Zhi-Jiang, Wang Ke-Xin, Chen Xi. Methodology of data reconciliation and parameter estimation for variable load in process system. CIESC Journal, 2012, 63(6): 1780-1789 (张正江, 曾国强, 邵之江, 王可心, 陈曦. 过程系统变负荷下的数据校正与参数估计方法. 化工学报, 2012, 63(6): 1780-1789)
[15]  E Jia-Qiang, Wang Yao-Nan, Mei Chi. Soft-sensing model of copper liquid temperature in copper refining process and its application. CIESC Journal, 2006, 57(1): 203-209 (鄂加强, 王耀南, 梅炽. 铜精炼过程铜液温度软测量模型及应用. 化工学报, 2006, 57(1): 203-209)
[16]  Deng Z L, Zhang P, Qi W J, Liu J F, Gao Y. Sequential covariance intersection fusion Kalman filter. Information Sciences, 2012, 189: 293-309
[17]  M?nsson K. On ridge estimators for the negative binomial regression model. Economic Modelling, 2012, 29(2): 178-184
[18]  Stein C. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability. 1956, 1: 197-206
[19]  Sclove S L. Improved Estimators for Coefficients in Linear Regression. Technical Report, Department of Statistics Stanford University, 1967, No.128
[20]  Duran E A, Akdeniz F. Efficiency of the modified jackknifed Liu-type estimator. Statistical Papers, 2012, 53(2): 265-280
[21]  Hoerl A E, Kennard R W. Ridge regression: biased estimation for non-orthogonal problems. Technometrics, 1970, 12(1): 55-67
[22]  Du P J, Liu S C, Xia J S, Zhao Y D. Information fusion techniques for change detection from multi-temporal remote sensing images. Information Fusion, 2013, 14(1): 19-27
[23]  Feng Xiao-Liang, Wen Cheng-Lin, Liu Wei-Feng, Li Xiao-Fang, Xu Li-Zhong. Sequential fusion finite horizon H∞ filtering for multisenor system. Acta Automatica Sinca, 2013, 39(9): 1523-1532 (冯肖亮, 文成林, 刘伟峰, 李晓芳, 徐立中. 基于多传感器的序贯式融合有限域H∞ 滤波方法. 自动化学报, 2013, 39(9): 1523-1532)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133