全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于视觉显著性的两阶段采样突变目标跟踪算法

DOI: 10.3724/SP.J.1004.2014.01098, PP. 1098-1107

Keywords: 目标跟踪,突变运动,视觉显著性,Wang-Landau蒙特卡罗采样,两阶段采样模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对运动突变目标视觉跟踪问题,提出一种基于视觉显著性的两阶段采样跟踪算法.首先,将视觉显著性信息引入到Wang-Landau蒙特卡罗(Wang-LandauMonteCarlo,WLMC)跟踪算法中,设计了结合显著性先验的接受函数,利用子区域的显著性值来引导马尔可夫链的构造,通过增大目标出现区粒子的接受概率,提高采样效率;其次,针对运动序列中平滑与突变运动共存的特点,建立两阶段采样模型.其中第一阶段对目标当前运动类型进行判定,第二阶段则根据判定结果采用相应算法.突变运动采用基于视觉显著性的WLMC算法,平滑运动采用双链马尔可夫链蒙特卡罗(MarkochainMonteCarlo,MCMC)算法,以此完成目标跟踪,提高算法的鲁棒性.该算法既避免了目标在平滑运动时全局采样导致精度下降的缺点,又能在目标发生运动突变时有效捕获目标.实验结果表明,该算法不仅能有效处理运动突变目标的跟踪问题,在典型图像序列上也具有良好的鲁棒性.

References

[1]  Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 1-45, Article13
[2]  Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4): 603-617(侯志强, 韩崇昭. 视觉跟踪技术综述. 自动化学报, 2006, 32(4): 603-617)
[3]  Cai Y Z, de Freitas N, Little J J. Robust visual tracking for multiple targets. In: Proceeding of the 9th European Conference on Computer Vision. Graz, Austria: Springer-Verlag, 2006, 107-118
[4]  Isard M, Blake A. ICONDENSATION: unifying low-level and high-level tracking in a stochastic framework. In: Proceeding of European Conference on Computer Vision. Freiburg, Germany: Springer-Verlag, 1998, 893-908
[5]  Kwon J, Lee K M. Tracking of abrupt motion using Wang-Landau Monte Carlo estimation. In: Proceeding of the 10th European Conference on Computer Vision. Marseille, France: Springer Verlag, 2008. 387-400
[6]  Kwon J, Lee K. Wang-Landau Monte Carlo-based tracking methods for abrupt motions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 1011-1024
[7]  Perazzi F, Krahenbuhl P, Pritch Y, Hornung A. Saliency filters: contrast based filtering for salient region detection. In: Proceeding of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2012. 733-740
[8]  Ma Ru-Ning, Tu Xiao-Po, Ding Jun-Di, Yang Jing-Yu. To evaluate salience map towards popping out visual objects. Acta Automatica Sinica, 2012, 38(5): 870-876(马儒宁, 涂小坡, 丁军娣, 杨静宇. 视觉显著性凸显目标的评价. 自动化学报, 2012, 38(5): 870-876)
[9]  Guo Ying-Chun, Yuan Hao-Jie, Wu Peng. Image saliency detection based on local and regional features. Acta Automatica Sinica, 2013, 39(8): 1214-1224(郭迎春, 袁浩杰, 吴鹏. 基于Local特征和Regional特征的图像显著性检测. 自动化学报, 2013, 39(8): 1214-1224)
[10]  Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
[11]  Hou X D, Zhang L. Saliency detection: a spectral residual approach. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. 1-8
[12]  Xie Yu-Lin. Image Saliency Detection based on Bayesian Model [Master dissertation], Dalian University of Technology, China, 2011 (谢玉琳. 贝叶斯框架下的图像显著性检测 [硕士学位论文], 大连理工大学, 中国, 2011)
[13]  Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282
[14]  Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3): 125-141
[15]  Santner J, Leistner C, Saffari A, Pock T, Bischof H. PROST: parallel robust online simple tracking. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 723-730
[16]  Adam A, Rivlin E, Shimshoni I. Robust fragments-based tracking using the integral histogram. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA: IEEE, 2006. 798-805
[17]  Mei X, Ling H B. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272
[18]  Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632
[19]  Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422
[20]  Wang Xiao, Han Chong-Zhao. A multiple model particle filter for maneuvering target tracking based on composite sampling. Acta Automatica Sinica, 2013, 39(7): 1152-1156(王晓, 韩崇昭. 基于混合采样的多模型机动目标跟踪算法. 自动化学报, 2013, 39(7): 1152-1156)
[21]  Zuo Jun-Yi, Zhang Yi-Zhe, Liang Yan. Particle filter based on adaptive part Resampling. Acta Automatica Sinica, 2012, 38(4): 647-652(左军毅, 张怡哲, 梁彦. 自适应不完全重采样粒子滤波器. 自动化学报, 2012, 38(4): 647-652)
[22]  Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819
[23]  Smith K, Gatica-Perez D, Odobez J M. Using particles to track varying numbers of interacting people. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 962-969
[24]  Zhao T, Nevatia R. Tracking multiple humans in crowded environment. In: Proceeding of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE, 2004. II-406-II-413
[25]  Kwon J, Lee K. Visual tracking decomposition. In: Proceeding of 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1269-1276
[26]  Kwon J, Lee K M. Tracking by sampling trackers. In: Proceeding of the 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1195-1202
[27]  Roberts G O, Rosenthal J S. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 2009, 18(2): 349-367
[28]  Zhou X Z, Lu Y. Abrupt motion tracking via adaptive stochastic approximation Monte Carlo sampling. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010. 1847-1854
[29]  Wang F G, Landau D P. Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters, 2001, 86(10): 2050-2053

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133