全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂分数阶多自主体系统的运动一致性

DOI: 10.3724/SP.J.1004.2014.00489, PP. 489-496

Keywords: 分数阶,多自主体系统,时延,一致性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?复杂环境中,许多自然现象的动力学特性不能应用整数阶方程描述,而只能用分数阶(非整数阶)动力学的智能个体合作行为来解释.本文假设多自主体系统存在个体差异,采用不同的分数阶动力学特性组成复杂分数混合阶微分方程.应用分数阶系统的Laplace变换和频域理论,研究了有向网络拓扑下,时延分数混合阶多自主体系统的运动一致性.由于整数阶系统是分数阶系统的特殊情况,本文的结论可以推广到整数阶与分数阶混合的多自主体系统中.最后,应用仿真实例对本文结论进行了验证.

References

[1]  Couzin I D, Krause J, James R, Ruxton G D, Franks N R. Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology, 2002, 218(1): 1-11
[2]  Parrish J K, Viscido S V, Grünbaum D. Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 2002, 202(3): 296-305
[3]  Low D J. Following the crowd. Nature, 2000, 407(6803): 465-466
[4]  Czirók A, Vicsek T. Collective behavior of interacting self-propelled particles. Physica A: Statistical Mechanics and its Applications, 2000, 281(1-4): 17-29
[5]  Reynolds C W. Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Computer Graphics, 1987, 21(4): 25-34
[6]  Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226-1229
[7]  Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988-1001
[8]  Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
[9]  Ren W, Beard R W, Atkins E M. Information consensus in multivehicle cooperative control: collective group behavior through local interaction. IEEE Control Systems Magazine, 2007, 27(2): 71-82
[10]  Yu Jun-Yan, Wang Long. Group consensus in multi-agent systems with switching topologies and communication delays. Systems & Control Letters, 2010, 59(6): 340-348
[11]  Xiao Feng, Wang Long, Chen Jie, Gao Yan-Ping. Finite-time formation control for multi-agent systems. Automatica, 2009, 45(11): 2605-2611
[12]  Chen Fei, Chen Zeng-Qiang, Xiang Lin-Ying, Liu Zhong-Xin, Yuan Zhu-Zhi. Reaching a consensus via pinning control. Automatica, 2009, 45(5): 1215-1220
[13]  Yang Hong-Yong, Zhang Zhen-Xing, Zhang Si-Ying. Consensus of second-order multi-agent systems with exogenous disturbances. International Journal of Robust and Nonlinear Control, 2011, 21(9): 945-956
[14]  Hong Yi-Guang, Chen Guan-Rong, Bushnell L. Distributed observers design for leader-following control of multi-agent networks. Automatica, 2008, 44(3): 846-850
[15]  Tian Yu-Ping, Liu Cheng-Lin. Consensus of multi-agent systems with diverse input and communication delays. IEEE Transactions on Automatic Control, 2008, 53(9): 2122-2128
[16]  Tian Yu-Ping, Liu Cheng-Lin. Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations. Automatica, 2009, 45(5): 1374-1353
[17]  Yang Hong-Yong, Zhu Xun-Lin, Zhang Si-Ying. Consensus of second-order delayed multi-agent systems with leader-following. European Journal of Control, 2010, 16(2): 188-199
[18]  Su Hou-Sheng, Wang Xiao-Fan, Lin Zong-Li. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293-307
[19]  Wang Fei-Yue. Parallel control: a method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4): 293-302 (王飞跃. 平行控制: 数据驱动的计算控制方法. 自动化学报, 2013, 39(4): 293-302)
[20]  Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312-321(陈关荣. 复杂动态网络环境下控制理论遇到的问题与挑战. 自动化学报, 2013, 39(4): 312-321)
[21]  Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10): 1557-1570 (闵海波, 刘源, 王仕成, 孙富春. 多个体协调控制问题综述. 自动化学报, 2012, 38(10): 1557-1570)
[22]  Yan Wei-Sheng, Li Jun-Bing, Wang Yin-Tao. Consensus for damaged multi-agent system. Acta Automatica Sinica, 2012, 38(11): 1880-1884 (严卫生, 李俊兵, 王银涛. 受损多智能体系统的信息一致性. 自动化学报, 2012, 38(11): 1880-1884)
[23]  Podlubny I. Fractional Differential Equations. San Diego, CA: Academic Press, 1999
[24]  Hilfer R. Applications of Fractional Calculus in Physics. New Jersey: World Scientific, 2000
[25]  Ren Wei, Cao Yong-Can. Distributed Coordination of Multi-agent Networks. London: Springer-Verlag, 2011
[26]  Cao Yong-Can, Li Yan, Ren Wei, Chen Yang-Quan. Distributed coordination of networked fractional-order systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(2): 362-370
[27]  Cao Yong-Can, Ren Wei. Distributed formation control for fractional-order systems: dynamic interaction and absolute/relative damping. Systems & Control Letters, 2010, 59(3-4): 233-240
[28]  Lee D J, Spong M K. Agreement with non-uniform information delays. In: Proceedings of the American Control Conference. Minneapolis, MN: IEEE, 2006. 756-761
[29]  Zheng Y, Zhu Y, Wang L. Consensus of heterogeneous multi-agent systems. IET Control Theory and Applications, 2011, 5(16): 1881-1888
[30]  Zheng Yuanshi, Wang Long. Finite-time consensus of heterogeneous multi-agent systems with and without velocity measurements. Systems & Control Letters, 2012, 61(8): 871-878
[31]  Liu Cheng-Lin, Liu Fei. Stationary consensus of heterogeneous multi-agent systems with bounded communication delays. Automatica, 2011, 47(9): 2130-2133
[32]  Tian Yu-Ping, Zhang Ya. High-order consensus of heterogeneous multi-agent systems with unknown communication delays. Automatica, 2012, 48(6): 1205-1212
[33]  Vinnicombe G. On the Stability of End-to-End Congestion Control for the Internet, Technical report CUED/F-INFENG/TR. No. 398, Department of Engineering, University of Cambridge, USA, 2000
[34]  Desoer C A, Wang Y T. On the generalized Nyquist stability criterion. IEEE Transactions on Automatic Control, 1980, AC-25(2): 187-196
[35]  Li Shi-Hua, Du Hai-Bo, Lin Xiang-Ze. Finite-time consensus algorithm for multi-agent with double-integrator dynamics. Automatica, 2011, 47(8): 1706-1712
[36]  Lin Peng, Jia Ying-Min. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica, 2009, 45(9): 2154-2158

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133