全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合图像质量评价指标的相关性分析及性能评估

DOI: 10.3724/SP.J.1004.2014.00306, PP. 306-315

Keywords: 图像融合,客观指标,性能分析,相关性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?图像融合质量评价指标研究旨在提供一种高效、准确的方法,为融合模型选择、参数优化等问题提供支持.本文通过对现有指标的机理分析、指标性能检验与指标间相关性分析,提出一种客观评价指标集的遴选策略.本文首先将现有客观评价指标归为三类:基于统计的、基于信息的和基于人类视觉系统的;之后列举了类别内经典指标和最新指标;并在标准数据集上,使用正确排序指标对各图像融合客观评价指标的性能进行验证.结果表明,基于视觉系统类的指标性能普遍优于前两类.最后,利用Spearman相关系数挖掘各指标间的相关程度.实验表明,通过指标性能和相关系数可以选取合适的客观评价指标集.

References

[1]  Luo X Y, Zhang J, Dai Q H. Saliency-based geometry measurement for image fusion performance. IEEE Transactions on Instrumentation and Measurement, 2012, 61(4): 1130-1132
[2]  Zheng Y Z, Qin Z. Objective image fusion quality evaluation using structural similarity. Tsinghua Science and Technology, 2009, 14(6): 703-709
[3]  Zhang X Q. A novel quality metric for image fusion based on color and structural similarity. In: Proceedings of the 2009 International Conference on Signal Processing Systems. Singapore, Singapore: IEEE, 2009. 258-262
[4]  Chen H, Varshney P K. A human perception inspired quality metric for image fusion based on regional information. Information Fusion, 2007, 8(2): 193-207
[5]  Han Y, Cai Y Z, Cao Y, Xu X M. A new image fusion performance metric based on visual information fidelity. Information Fusion, 2013, 14(2): 127-135
[6]  Wang Z, Bovik A C, Lu L G. Why is image quality assessment so difficult? In: Proceedings of the 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL, USA: IEEE, 2002. 3313-3316
[7]  Wang Z, Bovik A C. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, 26(1): 98-117
[8]  Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612
[9]  Cvejic N, Canagarajah C N, Bull D R. Image fusion metric based on mutual information and Tsallis entropy. Electronics Letters, 2006, 42(11): 626-627
[10]  Wang Z, Bovik A C. A universal image quality index. Signal Processing Letters, 2002, 9(3): 81-84
[11]  Wang Z, Bovik A C. Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia Processing. USA: Morgan Claypool Publishers, 2006, 2(1): 1-156
[12]  Goshtasby A A, Nikolov S. Image fusion: advances in the state of the art. Information fusion, 2007, 8(2): 114-118
[13]  Yang B, Li S T. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Information fusion, 2012, 13(1): 10-19
[14]  Hu Liang-Mei, Gao Jun, He Ke-Feng. Research on quality measures for image fusion. Acta Electronica Sinica, 2004, 32(12A): 218-221(胡良梅, 高隽, 何柯峰. 图像融合质量评价方法的研究. 电子学报, 2004, 32(12A): 218-221)
[15]  Petrovi? V. Subjective tests for image fusion evaluation and objective metric validation. Information Fusion, 2007, 8(2): 208-216
[16]  Toet A, Franken E M. Perceptual evaluation of different image fusion schemes. Displays, 2003, 24(1): 25-37
[17]  Qu G H, Zhang D L, Yan P F. Information measure for performance of image fusion. Electronics Letters, 2002, 38(7): 313-315
[18]  Petrovi? V, Cootes T. Information representation for image fusion evaluation. In: Proceedings of the 9th International Conference on Information Fusion. Florence, Italy: IEEE, 2006. 1-7
[19]  Hossny M, Nahavandi S, Creighton D. Comments on “Information measure for performance of image fusion”. Electronics Letters, 2008, 44(18): 1066-1067
[20]  Xydeas C S, Petrovi? V. Objective image fusion performance measure. Electronics Letters, 2000, 36(4): 308-309
[21]  Wang Z, Bovik A C. A universal image quality index. IEEE Signal Processing Letters, 2002, 9(3): 81-84
[22]  Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment. In: Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 2003. 1398-1402
[23]  Sampat M P, Wang Z, Gupta S, Bovik A C, Markey M K. Complex wavelet structural similarity: a new image similarity index. IEEE Transactions on Image Processing, 2009, 18(11): 2385-2401
[24]  Piella G, Heijmans H. A new quality metric for image fusion. In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona, Spain: IEEE, 2003. 173-176
[25]  Yang C, Zhang J Q, Wang X R, Liu X. A novel similarity based quality metric for image fusion. Information Fusion, 2008, 9(2): 156-160
[26]  Cheng Guang-Quan, Zhang Ji-Dong, Cheng Li-Zhi, Huang Jin-Cai, Liu Zhong. Image quality assessment based on geometric structural distortion model. Acta Automatica Sinica, 2011, 37(7): 811-819(程光权, 张继东, 成礼智, 黄金才, 刘忠. 基于几何结构失真模型的图像质量评价研究. 自动化学报, 2011, 37(7): 811-819)
[27]  ImageFusion.org: The Internet Resource for Research in Image Fusion[Online], Available: http://www.imagefusion. org/, August 12, 2012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133